【題目】已知如圖1,在△ABC中,∠ACB=90°,BC=AC,點(diǎn)D在AB上,DE⊥AB交BC于E,點(diǎn)F是AE的中點(diǎn)
(1)寫(xiě)出線(xiàn)段FD與線(xiàn)段FC的關(guān)系并證明;
(2)如圖2,將△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線(xiàn)段FD與線(xiàn)段FC的關(guān)系是否變化,寫(xiě)出你的結(jié)論并證明;
(3)將△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)一周,如果BC=4,BE=2,直接寫(xiě)出線(xiàn)段BF的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=36°,∠C=72°,點(diǎn)D在AC上,BC=BD,DE∥BC交AB于點(diǎn)E,則圖中等腰三角形共有( )
A. 3個(gè)B. 4個(gè)C. 5個(gè)D. 6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC和△DCE中,CA=CB,CD=CE,∠CAB= ∠CED=α.
(1)如圖1,將AD、EB延長(zhǎng),延長(zhǎng)線(xiàn)相交于點(diǎn)0.
①求證:BE= AD;
②用含α的式子表示∠AOB的度數(shù)(直接寫(xiě)出結(jié)果);
(2)如圖2,當(dāng)α=45°時(shí),連接BD、AE,作CM⊥AE于M點(diǎn),延長(zhǎng)MC與BD交于點(diǎn)N.求證:N是BD的中點(diǎn).
注:第(2)問(wèn)的解答過(guò)程無(wú)需注明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=-2x與直線(xiàn)y=kx+b相交于點(diǎn)A(a,2),并且直線(xiàn)y=kx+b經(jīng)過(guò)x軸上點(diǎn)B(2,0).
(1)求直線(xiàn)y=kx+b的解析式;
(2)求兩條直線(xiàn)與y軸圍成的三角形面積;
(3)直接寫(xiě)出不等式(k+2)x+b≥0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明參加某網(wǎng)店的“翻牌抽獎(jiǎng)”活動(dòng).如圖,4張牌分別對(duì)應(yīng)價(jià)值5,10,15,20(單位:元)的4件獎(jiǎng)品.
(1)如果隨機(jī)翻1張牌,求抽中20元獎(jiǎng)品的概率;
(2)如果隨機(jī)翻兩張牌,且第一次翻過(guò)的牌不再參加下次翻牌,求所獲獎(jiǎng)品總值不低于30元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖 1,AM∥CN,點(diǎn) B 為平面內(nèi)一點(diǎn),AB⊥BC 于 B,過(guò) B 作 BD⊥ AM.
(1)求證:∠ABD=∠C;
(2)如圖 2,在(1)問(wèn)的條件下,分別作∠ABD、∠DBC 的平分線(xiàn)交 DM 于 E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,
①求證:∠ABF=∠AFB;
②求∠CBE 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中華文化十大精深,源遠(yuǎn)流長(zhǎng),我國(guó)古代數(shù)學(xué)著作《增刪算法統(tǒng)宗》記載“繩索量竿”問(wèn)題:“一條竿子一條索,索比竿子短一托!逼浯笠 為:現(xiàn)有一根竿和一要繩索,折回索子來(lái)量竿,卻比竿尺;如果將繩索對(duì)半折后再去量竿和一條繩索,用繩索去量竿,繩索比竿長(zhǎng)5尺;如果繩索對(duì)半折后再去量竿,就比竿短5尺.設(shè)繩索長(zhǎng)尺,竿長(zhǎng)尺,則符合題意的方程組是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BFDE為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)AB,CD,EF相交于點(diǎn)O,∠AOE:∠AOD=1:3,∠COB:∠DOF=3:4,求∠DOE的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com