【題目】《中國(guó)詩(shī)詞大會(huì)》以“賞中華詩(shī)詞、尋文化基因、品生活之美”為基本宗旨,力求通過(guò)對(duì)詩(shī)詞知識(shí)的比拼及賞析,帶動(dòng)全民重溫那些曾經(jīng)學(xué)過(guò)的古詩(shī)詞,分享詩(shī)詞之美,感受詩(shī)詞之趣,從古人的智慧和情懷中汲取營(yíng)養(yǎng),涵養(yǎng)心靈,自開播以來(lái)深受廣大師生的喜愛.某學(xué)校為了提高學(xué)生的詩(shī)詞水平,倡導(dǎo)全校3000名學(xué)生進(jìn)行經(jīng)典詩(shī)詞誦背活動(dòng),并在活動(dòng)之后舉辦經(jīng)典詩(shī)詞大賽.為了解本次系列活動(dòng)的持續(xù)效果,學(xué)校團(tuán)委在活動(dòng)啟動(dòng)之初,隨機(jī)抽取部分學(xué)生調(diào)查“一周詩(shī)詞誦背數(shù)量”,根據(jù)調(diào)查結(jié)果繪制成的條形和扇形統(tǒng)計(jì)圖如圖所示.
(整理、描述數(shù)據(jù)):
大賽結(jié)束后一個(gè)月,再次抽查這部分學(xué)生“一周詩(shī)詞誦背數(shù)量”:
一周詩(shī)詞背數(shù)量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人數(shù) | 16 | 24 | 32 | 78 | 35 |
(分析數(shù)據(jù)):
平均數(shù) | 中位數(shù) | 眾數(shù) | |
大賽之前 | 5 | ||
大賽之后 | 6 | 6 | 6 |
請(qǐng)根據(jù)調(diào)查的信息
(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)計(jì)算 首, 首, 首,并估計(jì)大賽后一個(gè)月該校學(xué)生一周詩(shī)詞誦背6首(含6首)以上的人數(shù);
(3)根據(jù)調(diào)査的相關(guān)數(shù)據(jù),選擇適當(dāng)?shù)慕y(tǒng)計(jì)量評(píng)價(jià)該校經(jīng)典詩(shī)詞誦背系列活動(dòng)的效果.
【答案】(1)補(bǔ)全圖形見解析;(2)55,4.5,4;2100人;(3)平均數(shù),中位數(shù)和眾數(shù)
【解析】
(1)根據(jù)條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖中的數(shù)據(jù)可以解答本題;
(2)根據(jù)中位數(shù)和眾數(shù)的概念及樣本估計(jì)總體思想的運(yùn)用求解可得;
(3)根據(jù)統(tǒng)計(jì)圖和表格中的數(shù)據(jù)可以分別計(jì)算出比賽前后的眾數(shù)和中位數(shù),從而可以解答本題.
解:(1)被抽查的學(xué)生總?cè)藬?shù)為40÷=240(人),
∴4首的人數(shù)為240×=90(人),
補(bǔ)全圖形如下:
(2)a=240-(16+24+32+78+35)=55,b==4.5,c=4,
估計(jì)大賽后一個(gè)月該校學(xué)生一周詩(shī)詞誦背6首(含6首)以上的人數(shù)為:
3000×=2100(人),
故答案為:55、4.5、4;
(3)活動(dòng)啟動(dòng)之初的中位數(shù)是4.5首,眾數(shù)是4首,大賽比賽后一個(gè)月時(shí)的中位數(shù)是6首,眾數(shù)是6首,由比賽前后的中位數(shù)和眾數(shù)看,比賽后學(xué)生背誦詩(shī)詞的積極性明顯提高,這次舉辦后的效果比較理想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在所給的方格紙中,每個(gè)小正方形的邊長(zhǎng)都是1,四邊形是平行四邊形,連結(jié)(點(diǎn),,,均在格點(diǎn)上),請(qǐng)按要求完成下列作圖任務(wù).要求:①僅用無(wú)刻度直尺,且不能用直尺中的直角;②保留作圖痕跡.
(1)在圖1中作的中位線,且;
(2)在圖2中取邊上點(diǎn),以,為鄰邊作,且的面積等于的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,對(duì)于已知的△ABC,點(diǎn)P在邊BC的垂直平分線上,若以P點(diǎn)為圓心,PB為半徑的⊙P與△ABC三條邊的公共點(diǎn)個(gè)數(shù)之和大于等于3,則稱點(diǎn)P為△ABC關(guān)于邊BC的“穩(wěn)定點(diǎn)”.如圖為△ABC關(guān)于邊BC的一個(gè)“穩(wěn)定點(diǎn)”P的示意圖,已知A(m,0),B(0,n).
(1) 如圖1,當(dāng)時(shí),在點(diǎn)中,△AOB關(guān)于邊OA的“穩(wěn)定點(diǎn)”是________.
(2) 如圖2,當(dāng)n=4時(shí),若直線y=6上存在△AOB關(guān)于邊AB的“穩(wěn)定點(diǎn)”,則m的取值范圍是___________
(3)如圖3,當(dāng)m=3,時(shí),過(guò)點(diǎn)M(5,7)的直線y=kx+b上存在△AOB關(guān)于邊AB的“穩(wěn)定點(diǎn)”,則k的取值范圍是__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖 1,在等腰△ABC 中,AB=AC,點(diǎn) D,E 分別為 BC,AB 的中點(diǎn),連接 AD.在線段 AD 上任取一點(diǎn) P,連接 PB,PE.若 BC=4,AD=6,設(shè) PD=x(當(dāng)點(diǎn) P 與點(diǎn) D 重合時(shí),x 的值為 0),PB+PE=y.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y 隨自變量x 的變化而變化的規(guī)律進(jìn)行了探究. 下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)通過(guò)取點(diǎn)、畫圖、計(jì)算,得到了 x 與 y 的幾組值,如下表:
x | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y | 5.2 | 4.2 | 4.6 | 5.9 | 7.6 | 9.5 |
說(shuō)明:補(bǔ)全表格時(shí),相關(guān)數(shù)值保留一位小數(shù).(參考數(shù)據(jù):≈1.414,≈1.732,≈2.236)
(2)建立平面直角坐標(biāo)系(圖 2),描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)求函數(shù) y 的最小值(保留一位小數(shù)),此時(shí)點(diǎn) P 在圖 1 中的什么位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)(是常數(shù),)的自變量與函數(shù)值的部分對(duì)應(yīng)值如下表:
… | 0 | 1 | 2 | … | |||
… | … |
且當(dāng)時(shí),與其對(duì)應(yīng)的函數(shù)值.有下列結(jié)論:①;②和3是關(guān)于的方程的兩個(gè)根;③.其中,正確結(jié)論的個(gè)數(shù)是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形為矩形,連接,,點(diǎn)在邊上.
(1)如圖①,若,,求的面積;
(2)如圖②,延長(zhǎng)至點(diǎn),使得,連接并延長(zhǎng)交于點(diǎn),過(guò)點(diǎn)作于點(diǎn),連接,求證:;
(3)如圖③,將線段繞點(diǎn)旋轉(zhuǎn)一定的角度()得到線段,連接,點(diǎn)始終為的中點(diǎn),連接.已知,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y = ax2 ax + c圖象的頂點(diǎn)為C,一次函數(shù)y = x + 3的圖象與這個(gè)二次函數(shù)的圖象交于A、B兩點(diǎn)(其中點(diǎn)A在點(diǎn)B的左側(cè)),與它的對(duì)稱軸交于點(diǎn)D.
(1)求點(diǎn)D的坐標(biāo);
(2) ①若點(diǎn)C與點(diǎn)D關(guān)于x軸對(duì)稱,且△BCD的面積等于4,求此二次函數(shù)的關(guān)系式;
②若CD=DB,且△BCD的面積等于4,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB = 90°,BC = 3,AC = 4,點(diǎn)D為邊AB上一點(diǎn).將△BCD沿直線CD翻折,點(diǎn)B落在點(diǎn)E處,聯(lián)結(jié)AE.如果AE // CD,那么BE =________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com