如圖,已知等腰直角三角形RBC,其中∠RBC=90°,RB=BC=2.點A、D分別是RB、RC的中點,現(xiàn)將△RAD沿著直線AD折起到△PAD的位置,使PA⊥AB,連結(jié)PB、PC.

(Ⅰ)求證:BC⊥PB;

(Ⅱ)求二面角A-CD-P的平面角的余弦值.

答案:
解析:

  解:(Ⅰ)證明:∵點A、D分別是、的中點,

  ∴.∴∠=90°.

  ∴.∴,

  ∵,∴⊥平面

  ∵平面,∴

  (Ⅱ)由(Ⅰ)知平面平面,又平面平面

  平面,取的中點為,則,連接,則平面,所以

  ,所以即為所求二面角的平面角,因為,所以,所以

  故所求二面角的平面角的余弦值是


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知等腰梯形ABCQ,AB∥CQ,CQ=2AB=2BC=4,D是CQ的中點,∠BCQ=60°,將△QDA沿AD折起,點Q變?yōu)辄cP,使平面PAD⊥平面ABCD.
(1)求證:BC∥平面PAD;
(2)求證:△PBC是直角三角形;
(3)求三棱錐P-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:江蘇模擬題 題型:解答題

如圖,已知等腰梯形ABCQ,AB∥CQ,CQ=2AB=2BC=4,D是CQ的中點,∠BCQ=60°,將△QDA沿AD折起,點Q變?yōu)辄cP,使平面PAD⊥平面ABCD。
(1)求證:BC∥平面PAD;
(2)求證:△PBC是直角三角形;
(3)求三棱錐P-BCD的體積。

查看答案和解析>>

科目:高中數(shù)學 來源:模擬題 題型:解答題

如圖,已知在直三棱柱ABC- A1B1C1中,△ABC為等腰直角三角形,∠BAC=90°,且AB= AA1,D、E、F分別為B1A、C1C、BC的中點。
(1)求證:DE∥平面ABC;
(2)求證:B1F⊥平面AEF;
(3)求二面角B1-AE-F的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省高考數(shù)學預測試卷(3)(解析版) 題型:解答題

如圖,已知等腰梯形ABCQ,AB∥CQ,CQ=2AB=2BC=4,D是CQ的中點,∠BCQ=60°,將△QDA沿AD折起,點Q變?yōu)辄cP,使平面PAD⊥平面ABCD.
(1)求證:BC∥平面PAD;
(2)求證:△PBC是直角三角形;
(3)求三棱錐P-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇高考數(shù)學預測試卷(解析版) 題型:解答題

如圖,已知等腰梯形ABCQ,AB∥CQ,CQ=2AB=2BC=4,D是CQ的中點,∠BCQ=60°,將△QDA沿AD折起,點Q變?yōu)辄cP,使平面PAD⊥平面ABCD.
(1)求證:BC∥平面PAD;
(2)求證:△PBC是直角三角形;
(3)求三棱錐P-BCD的體積.

查看答案和解析>>

同步練習冊答案