【題目】楊陽(yáng)同學(xué)沿一段筆直的人行道行走,在由A步行到達(dá)B處的過(guò)程中,通過(guò)隔離帶的空隙O,剛好瀏覽完對(duì)面人行道宣傳墻上的社會(huì)主義核心價(jià)值觀標(biāo)語(yǔ),其具體信息匯集如下:

如圖,AB∥OH∥CD,相鄰兩平行線間的距離相等,AC,BD相交于O,OD⊥CD.垂足為D,已知AB=20米,請(qǐng)根據(jù)上述信息求標(biāo)語(yǔ)CD的長(zhǎng)度.

【答案】20

【解析】

試題分析:由AB∥CD,利用平行線的性質(zhì)可得∠ABO=∠CDO,由垂直的定義可得∠CDO=90°,易得OB⊥AB,由相鄰兩平行線間的距離相等可得OD=OB,利用ASA定理可得

△ABO≌△CDO,由全等三角形的性質(zhì)可得結(jié)果.

試題解析:∵AB∥CD,∴∠ABO=∠CDO,∵OD⊥CD,∴∠CDO=90°,∴∠ABO=90°,即OB⊥AB,∵相鄰兩平行線間的距離相等,∴OD=OB,在△ABO與△CDO中,∵∠ABO=CDO,OB=OD,AOB=COD,∴△ABO≌△CDO(ASA),∴CD=AB=20(m)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形紙片ABCD中,∠A=60°,折疊菱形紙片ABCD,使點(diǎn)C落在DP(P為AB中點(diǎn))所在的直線上,得到經(jīng)過(guò)點(diǎn)D的折痕DE.則∠DEC的大小為(
A.78°
B.75°
C.60°
D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【問(wèn)題提出】

用n根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?

【問(wèn)題探究】

不妨假設(shè)能搭成m種不同的等腰三角形,為探究m與n之間的關(guān)系,我們可以先從特殊入手,通過(guò)試驗(yàn)、觀察、類比、最后歸納、猜測(cè)得出結(jié)論.

【探究一】

(1)用3根相同的木棒搭一個(gè)三角形,能搭成多少種不同的等腰三角形?

此時(shí),顯然能搭成一種等腰三角形.

所以,當(dāng)n=3時(shí),m=1.

(2)用4根相同的木棒搭一個(gè)三角形,能搭成多少種不同的等腰三角形?

只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形.

所以,當(dāng)n=4時(shí),m=0.

(3)用5根相同的木棒搭一個(gè)三角形,能搭成多少種不同的等腰三角形?

若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形.

若分成2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形.

所以,當(dāng)n=5時(shí),m=1.

(4)用6根相同的木棒搭一個(gè)三角形,能搭成多少種不同的等腰三角形?

若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形.

若分成2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形.

所以,當(dāng)n=6時(shí),m=1.

綜上所述,可得:表①

【探究二】

(1)用7根相同的木棒搭一個(gè)三角形,能搭成多少種不同的三角形?

(仿照上述探究方法,寫出解答過(guò)程,并將結(jié)果填在表②中)

(2)用8根、9根、10根相同的木棒搭一個(gè)三角形,能搭成多少種不同的等腰三角形?

(只需把結(jié)果填在表②中)

表②

你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進(jìn)行探究,…

【問(wèn)題解決】:

用n根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?(設(shè)n分別等于4k﹣1,4k,4k+1,4k+2,其中k是正整數(shù),把結(jié)果填在表③中)

表③

【問(wèn)題應(yīng)用】:

用2016根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?(寫出解答過(guò)程),其中面積最大的等腰三角形每腰用了 根木棒.(只填結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O為△ABC的外接圓,圓心O在AB上.

(1)在圖1中,用尺規(guī)作圖作∠BAC的平分線AD交⊙O于D(保留作圖痕跡,不寫作法與證明);

(2)如圖2,設(shè)∠BAC的平分線AD交BC于E,⊙O半徑為5,AC=4,連接OD交BC于F.

①求證:OD⊥BC;

②求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:m6m3的結(jié)果(
A.m18
B.m9
C.m3
D.m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為2的小正方形和邊長(zhǎng)為x的大正方形放在一起.

(1)用x表示陰影部分的面積;
(2)計(jì)算當(dāng)x=5時(shí),陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1、圖2為同一長(zhǎng)方體房間的示意圖,圖3為該長(zhǎng)方體的表面展開(kāi)圖.

(1)蜘蛛在頂點(diǎn)A′處.

①蒼蠅在頂點(diǎn)B處時(shí),試在圖1中畫出蜘蛛為捉住蒼蠅,沿墻面爬行的最近路線;

②蒼蠅在頂點(diǎn)C處時(shí),圖2中畫出了蜘蛛捉住蒼蠅的兩條路線,往天花板ABCD爬行的最近路線A′GC和往墻面BB′C′C爬行的最近路線A′HC,試通過(guò)計(jì)算判斷哪條路線更近;

(2)在圖3中,半徑為10dm的⊙M與D′C′相切,圓心M到邊CC′的距離為15dm,蜘蛛P在線段AB上,蒼蠅Q在⊙M的圓周上,線段PQ為蜘蛛爬行路線,若PQ與⊙M相切,試求PQ長(zhǎng)度的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】水星和太陽(yáng)的平均距離約為57900000km,用科學(xué)記數(shù)法表示為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把矩形ABCD沿EF翻折,點(diǎn)B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是(
A.12
B.24
C.12
D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案