【題目】如圖,ABC中,∠BAC=90°,ADBC,ABC的平分線BEAD于點(diǎn)F,AG平分∠DAC.給出下列結(jié)論:①∠BAD=C;AE=AF;③∠EBC=C;FGAC;EF=FG.其中正確的結(jié)論是_____

【答案】①②④

【解析】

①連接EG.根據(jù)等角的余角相等即可得到結(jié)果,故①正確;②由BE、AG分別是∠ABC、∠DAC的平分線.得到∠ABF=∠EBD.由于∠AFE=∠FAB+∠FBA,∠AEG=∠C+∠EBD,得到∠AFE=∠AEF,根據(jù)等腰三角形的性質(zhì)可得②正確;③如果∠EBC=∠C,則∠C=∠ABC,由于∠BAC=90°那么∠C=30°,但∠C≠30°,故③錯(cuò)誤;④證明△ABN≌△GBN,得到AN=GN,證出四邊形AFGE是平行四邊形,得到GF∥AE,故④正確;⑤由AE=AF,AE=FG,而△AEF不是等邊三角形,得到EF≠AE,于是EF≠FG,故⑤錯(cuò)誤.

①連接EG.

∵∠BAC=90°,ADBC.

∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°.

∴∠ABC=∠DAC,∠BAD=∠C,故①正確;

②∵BE、AG分別是∠ABC、∠DAC的平分線,

∴∠ABF=∠EBD.

∵∠AFE=∠FAB+∠FBA,∠AEG=∠C+∠EBD,

∴∠AFE=∠AEF.

AF=AE,故②正確;

③如果∠EBC=∠C,則∠C=ABC,

∵∠BAC=90°,

那么∠C=30°,但∠C≠30°,故③錯(cuò)誤;

④∵AG是∠DAC的平分線,

ANBE,FN=EN

在△ABN與△GBN中,∵

∴△ABN≌△GBN.

AN=GN.

∴四邊形AFGE是平行四邊形.

GFAE.

GFAC.故④正確;

⑤∵AE=AF,AE=FG,

而△AEF不是等邊三角形,

EFAE.

EFFG,故⑤錯(cuò)誤.

故答案為:①②④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位長度的正方形,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),△ABC的頂點(diǎn)均在格點(diǎn)上.

(1)畫出將△ABC向右平移2個(gè)單位后得到的△A1B1C1 , 再畫出將△A1B1C1繞點(diǎn)B1按逆時(shí)針方向旋轉(zhuǎn)90°后所得到的△A2B1C2;
(2)求線段B1C1旋轉(zhuǎn)到B1C2的過程中,點(diǎn)C1所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在矩形ABCD中,AB=a,BC=b,點(diǎn)E是線段AD邊上的任意一點(diǎn)(不含端點(diǎn)A、D),連接BE、CE.

若a=5,sin∠ACB= ,解答下列問題:
(1)填空:b=;
(2)當(dāng)BE⊥AC時(shí),求出此時(shí)AE的長;
(3)設(shè)AE=x,試探索點(diǎn)E在線段AD上運(yùn)動(dòng)過程中,使得△ABE與△BCE相似時(shí),請寫x、a、b三者的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司裝修需用A型板材240塊、B型板材180塊,A型板材規(guī)格是60cm×30cm,B型板材規(guī)格是40cm×30cm.現(xiàn)只能購得規(guī)格是150cm×30cm的標(biāo)準(zhǔn)板材.一張標(biāo)準(zhǔn)板材盡可能多地裁出A型、B型板材,共有下列三種裁法:(如圖是裁法一的裁剪示意圖)


裁法一

裁法二

裁法三

A型板材塊數(shù)

1

2

0

B型板材塊數(shù)

2

M

N

設(shè)所購的標(biāo)準(zhǔn)板材全部裁完,其中按裁法一裁x張、按裁法二裁y張、按裁法三裁z張,且所裁出的A、B兩種型號的板材剛好夠用.

1)上表中,m= ,n= ;

2)分別求出yxzx的函數(shù)關(guān)系式;

3)若用Q表示所購標(biāo)準(zhǔn)板材的張數(shù),求Qx的函數(shù)關(guān)系式,并指出當(dāng)x取何值時(shí)Q最小,此時(shí)按三種裁法各裁標(biāo)準(zhǔn)板材多少張?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)得到的,連接BE、CF相交于點(diǎn)D.
(1)求證:BE=CF;
(2)當(dāng)四邊形ABDF為菱形時(shí),求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2x+2k﹣2=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若k為正整數(shù),求該方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①,在四邊形ABCD中,ABDC,EBC的中點(diǎn),若AE是∠BAD的平分線,試探究AB,AD,DC之間的等量關(guān)系,證明你的結(jié)論;

(2)如圖②,在四邊形ABCD中,ABDC,AFDC的延長線交于點(diǎn)F,EBC的中點(diǎn),若AE是∠BAF的平分線,試探究AB,AF,CF之間的等量關(guān)系,證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC,C=90°,DCB上,EAB之中點(diǎn),AD、CE相交于F,且AD=DB.若∠B=20°,則∠DFE=( )

A. 40° B. 50° C. 60° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,圖中的小方格都是邊長為1的正方形,△ABC與△ABC′是以點(diǎn)O為位似中心的位似圖形,它們的頂點(diǎn)都在小正方形的頂點(diǎn)上.

(1)畫出位似中心點(diǎn)O
(2)直接寫出△ABC與△ABC′的位似比;
(3)以位似中心O為坐標(biāo)原點(diǎn),以格線所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,畫出△ABC′關(guān)于點(diǎn)O中心對稱的△ABC″,并直接寫出△ABC″各頂點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案