【題目】每年5月的第二個(gè)星期日即為母親節(jié),父母恩深重,恩憐無(wú)歇時(shí),許多市民喜歡在母親節(jié)為母親送花,感恩母親,祝福母親.今年節(jié)日前夕,某花店采購(gòu)了一批鮮花禮盒,經(jīng)分析上一年的銷售情況,發(fā)現(xiàn)該鮮花禮盒的該周銷售量y(盒)是銷售單價(jià)x(元)的一次函數(shù),已知銷售單價(jià)為70/盒時(shí),銷售量為160盒;銷售單價(jià)為80/盒時(shí),銷售量為140盒.

1)求該周銷售量y(盒)關(guān)于銷售單價(jià)x(元)的一次函數(shù)解析式;

2)若按去年方式銷售,已知今年該鮮花禮盒的進(jìn)價(jià)是每盒50元,商家要求該周至少要賣110盒,請(qǐng)你幫店長(zhǎng)算一算,要完成商家的銷售任務(wù),銷售單價(jià)不能超過(guò)多少元?

3)在(2)的條件下,試確定銷售單價(jià)x為何值時(shí),花店該周銷售鮮花禮盒獲得的利潤(rùn)最大?并求出獲得的最大利潤(rùn).

【答案】1y=﹣2x+300;(2)銷售單價(jià)不能超過(guò)95元;(3)銷售單價(jià)定為95元時(shí),每周的利潤(rùn)最大,最大利潤(rùn)為4950元.

【解析】

1)設(shè)y關(guān)于x的函數(shù)解析式為ykx+b,把x70、y160x80y140代入即可求解;

2)由題意可得y≥110,即可求出x的取值;

3)設(shè)銷售利潤(rùn)為w元,則w=(x50)(﹣2x+300),根據(jù)二次函數(shù)的性質(zhì)即可出最值.

解:(1)設(shè)y關(guān)于x的函數(shù)解析式為ykx+b,

x70、y160x80、y140代入,

得:

解得,

y關(guān)于x的函數(shù)解析式為y=﹣2x+300;

2)由題意可得y≥110

2x+300≥110,

解得x≤95,

銷售單價(jià)不能超過(guò)95元;

3)設(shè)銷售利潤(rùn)為w元,

w=(x50)(﹣2x+300

=﹣2x2+400x15000

=﹣2x1002+5000

20,對(duì)稱軸為x100,

當(dāng)50≤x≤95時(shí),wx的增大而增大,

當(dāng)x95時(shí),w取得最大值,最大值為4950,

銷售單價(jià)定為95元時(shí),每周的利潤(rùn)最大,最大利潤(rùn)為4950元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)EBC上的一點(diǎn),F在線段DE上,且∠AFE=∠ADC

1)若∠AFE70°,∠DEC40°,求∠DAF的大小;

2)若DEAD,求證:AFD≌△DCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某莊有甲、乙兩家草莓采摘園的草莓銷售價(jià)格相同,春節(jié)期間,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進(jìn)園需購(gòu)買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買門票,采摘的草莓超過(guò)一定數(shù)量后,超過(guò)部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費(fèi)用為(元),在乙園所需總費(fèi)用為(元),、之間的函數(shù)關(guān)系如圖所示.

1)甲采摘園的門票是_____,兩個(gè)采摘園優(yōu)惠前的草莓單價(jià)是每千克____;

2)當(dāng)時(shí),求的函數(shù)表達(dá)式;

3)游客在“春節(jié)期間”采摘多少千克草莓時(shí),甲、乙兩家采摘園的總費(fèi)用相同.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB與函數(shù)yx>0)的圖象交于點(diǎn)Am,2),B(2,n).過(guò)點(diǎn)AAC平行于x軸交y軸于點(diǎn)C,在y軸負(fù)半軸上取一點(diǎn)D,使ODOC,且ACD的面積是6,連接BC

(1)求mk,n的值;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°BC6,AC8,點(diǎn)MAC邊的中點(diǎn),點(diǎn)NBC邊上的任意一點(diǎn),若點(diǎn)C關(guān)于直線MN的對(duì)稱點(diǎn)C恰好落在ABC的中位線上,則CN的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為a,點(diǎn)E在邊AB上運(yùn)動(dòng)(不與點(diǎn)A,B重合),∠DAM=45°,點(diǎn)F在射線AM上,且,CFAD相交于點(diǎn)G,連接ECEF,EG,則下列結(jié)論:①∠ECF=45°;②的周長(zhǎng)為;③ ;④的面積的最大值.其中正確的結(jié)論是____.(填寫(xiě)所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】潮州旅游文化節(jié)開(kāi)幕前,某鳳凰茶葉公司預(yù)測(cè)今年鳳凰茶葉能夠暢銷,就用32000元購(gòu)進(jìn)了一批鳳凰茶葉,上市后很快脫銷,茶葉公司又用68000元購(gòu)進(jìn)第二批鳳凰茶葉,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)數(shù)量的2倍,但每千克鳳凰茶葉進(jìn)價(jià)多了10元.

(1)該鳳凰茶葉公司兩次共購(gòu)進(jìn)這種鳳凰茶葉多少千克?

(2)如果這兩批茶葉每千克的售價(jià)相同,且全部售完后總利潤(rùn)率不低于20%,那么每千克售價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù) y=(xa2)(x+a+3

1)求該二次函數(shù)的圖象的對(duì)稱軸.

2)對(duì)于該二次函數(shù)圖象上的兩點(diǎn) Px1,y1)、Qx2,y2).

當(dāng) x≥m 時(shí),y x 的增大而增大,寫(xiě)出一個(gè)符合條件的 m 值;

當(dāng) m≤x2≤m+2,當(dāng) x1≤1 時(shí),均有 y1≥y2,求 m 的取值范圍;

3)當(dāng)二次函數(shù)過(guò)(03)點(diǎn)時(shí),且與直線 y=kx+2 交于 A、B 兩點(diǎn),其中有一交點(diǎn)的橫坐標(biāo) x0 滿足 1x03, k 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一列動(dòng)車從A地開(kāi)往B地,一列普通列車從B地開(kāi)往A地,兩車均勻速行駛并同時(shí)出發(fā),設(shè)普通列車行駛的時(shí)間為x(小時(shí)),兩車之間的距離為y(千米),如圖中的折線表示yx之間的函數(shù)關(guān)系,下列說(shuō)法中正確的是:( 。

AB兩地相距1000千米;②兩車出發(fā)后3小時(shí)相遇;③普通列車的速度是100千米/小時(shí);④動(dòng)車從A地到達(dá)B地的時(shí)間是4小時(shí).

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案