【題目】如圖,△ACB和△ECD都是等腰直角三角形,A、C、D三點在同一直線上,連接BD、AE,并延長AE交BD于F。
(1)求證:△ACE≌△BCD;
(2)直線AE與BD互相垂直嗎?請證明你的結論。
【答案】(1)、證明過程見解析;(2)、證明過程見解析.
【解析】
試題分析:(1)、根據等腰直角三角形的性質得出AC=BC,EC=CD,∠BCD=∠ACB=90°,從而得到三角形全等;(2)、直線AE與BD互相垂直就是證明∠AFD=90°,根據三角形全等得到∠AEC=∠BDC,結合∠BEF=∠AEC,從而得出∠BEF=∠BDC,根據DBC+∠BDC=90°得到∠BEF+∠DBC=90°,從而得到垂直.
試題解析:(1)、∵△ACB和△ECD都是等腰直角三角形,∴AC=BC EC=CD,
又∵∠BCD=∠ACB=90°,∴△ACE≌△BCD(SAS)
(2)、∵△ACE≌△BCD ∴∠AEC=∠BDC,又∵∠BEF=∠AEC(對頂角),
∴∠BEF=∠BDC,又∵∠DBC+∠BDC=90°,∴∠BEF+∠DBC=90°,∴AF⊥BD,所以直線AE與BD互相垂直。
科目:初中數學 來源: 題型:
【題目】某校為更好地開展“傳統(tǒng)文化進校園”活動,隨機抽查了部分學生,了解他們最喜愛的傳統(tǒng)文化項目類型(分為書法、圍棋、戲劇、國畫共4類),并將統(tǒng)計結果繪制成如圖不完整的頻數分布表及頻數分布直方圖.
最喜愛的傳統(tǒng)文化項目類型頻數分布表
根據以上信息完成下列問題:
(1)直接寫出頻數分布表中a的值;
(2)補全頻數分布直方圖;
(3)若全校共有學生1500名,估計該校最喜愛圍棋的學生大約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠AGF=∠ABC,∠1+∠2=180°.
(1)試判斷BF與DE的位置關系,并說明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法中,正確的是 ( )
A. 任意兩個矩形形狀相同 B. 任意兩個菱形形狀相同
C. 任意兩個直角三角形相似 D. 任意兩個正五邊形形狀相同
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com