【題目】如圖,,點(diǎn)、都在射線上,,是射線上的一個(gè)動(dòng)點(diǎn),過、三點(diǎn)作圓,當(dāng)該圓與相切時(shí),其半徑的長為__________

【答案】

【解析】

C過點(diǎn)P、Q,且與相切于點(diǎn)M,連接CM,CP,過點(diǎn)CCNPQN并反向延長,交OBD,根據(jù)等腰直角三角形的性質(zhì)和垂徑定理,即可求出ONND、PN,設(shè)圓C的半徑為r,再根據(jù)等腰直角三角形的性質(zhì)即可用r表示出CD、NC,最后根據(jù)勾股定理列方程即可求出r

解:如圖所示,圓C過點(diǎn)PQ,且與相切于點(diǎn)M,連接CM,CP,過點(diǎn)CCNPQN并反向延長,交OBD

,,

PQ=OQOP=4

根據(jù)垂徑定理,PN=

ON=PNOP=4

RtOND中,∠O=45°

ON=ND=4,∠NDO=O=45°,OD=

設(shè)圓C的半徑為r,即CM=CP=r

∵圓C相切于點(diǎn)M

∴∠CMD=90°

∴△CMD為等腰直角三角形

CM=DM=r,CD=

NC=NDCD=4

根據(jù)勾股定理可得:NC2PN2=CP2

解得:(此時(shí)DMOD,點(diǎn)M不在射線OB上,故舍去)

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格圖中建立平面直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點(diǎn)A(0,4)、B(-4,4)、C(-6,2),請?jiān)诰W(wǎng)格圖中進(jìn)行如下操作:

(1)利用網(wǎng)格圖確定該圓弧所在圓的圓心D的位置(保留畫圖痕跡);

(2)連接ADCD,則D的半徑為_ __(結(jié)果保留根號(hào)),ADC的度數(shù)為_ __

(3)若扇形DAC是一個(gè)圓錐的側(cè)面展開圖,求該圓錐底面半徑.(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,李老師和同學(xué)們做一個(gè)游戲:他在三張硬紙片上分別寫出一個(gè)代數(shù)式,背面分別標(biāo)上序號(hào)①、②、③,擺成如圖所示的一個(gè)等式,然后翻開紙片②是4x2+5x+6,翻開紙片③是3x2x2

解答下列問題

1)求紙片①上的代數(shù)式;

2)若x是方程2x=﹣x9的解,求紙片①上代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】時(shí)代天街某商場經(jīng)營的某品牌書包,6月份的銷售額為20000元,7月份因?yàn)閺S家提高了出廠價(jià),商場把該品牌書包售價(jià)上漲20%,結(jié)果銷量減少50個(gè),使得銷售額減少了2000元.

1)求6月份該品牌書包的銷售單價(jià);

2)若6月份銷售該品牌書包獲利8000元,8月份商場為迎接中小學(xué)開學(xué)做促銷活動(dòng),該書包在6月售價(jià)的基礎(chǔ)上一律打八折銷售,若成本上漲5%,則銷量至少為多少個(gè),才能保證8月份的利潤比6月份的利潤至少增長6.25%?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教室里的飲水機(jī)接通電源就進(jìn)入自動(dòng)程序,開機(jī)加熱時(shí)每分鐘上升10℃,加熱到100℃停止加熱,水溫開始下降,此時(shí)水溫)與開機(jī)后用時(shí))成反比例關(guān)系,直至水溫降至30℃,飲水機(jī)關(guān)機(jī),飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開機(jī),重復(fù)上述自動(dòng)程序.若在水溫為30℃時(shí)接通電源,水溫)與時(shí)間)的關(guān)系如圖所示:

1)分別寫出水溫上升和下降階段之間的函數(shù)關(guān)系式;

2)怡萱同學(xué)想喝高于50℃的水,請問她最多需要等待多長時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)概念

若點(diǎn)的內(nèi)部,且、中有兩個(gè)角相等,則稱等角點(diǎn),特別地,若這三個(gè)角都相等,則稱強(qiáng)等角點(diǎn)”.

理解概念

1)若點(diǎn)的等角點(diǎn),且,則的度數(shù)是 .

2)已知點(diǎn)的外部,且與點(diǎn)的異側(cè),并滿足,作的外接圓,連接,交圓于點(diǎn).當(dāng)的邊滿足下面的條件時(shí),求證:的等角點(diǎn).(要求:只選擇其中一道題進(jìn)行證明!)

①如圖①,

②如圖②,

深入思考

3)如圖③,在中,、、均小于,用直尺和圓規(guī)作它的強(qiáng)等角點(diǎn).(不寫作法,保留作圖痕跡)

4)下列關(guān)于等角點(diǎn)、強(qiáng)等角點(diǎn)的說法:

①直角三角形的內(nèi)心是它的等角點(diǎn);

②等腰三角形的內(nèi)心和外心都是它的等角點(diǎn);

③正三角形的中心是它的強(qiáng)等角點(diǎn);

④若一個(gè)三角形存在強(qiáng)等角點(diǎn),則該點(diǎn)到三角形三個(gè)頂點(diǎn)的距離相等;

⑤若一個(gè)三角形存在強(qiáng)等角點(diǎn),則該點(diǎn)是三角形內(nèi)部到三個(gè)頂點(diǎn)距離之和最小的點(diǎn),其中正確的有 .(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了組織一次球類對(duì)抗賽,在本校隨機(jī)抽取了若干名學(xué)生,對(duì)他們每個(gè)人最喜歡的一項(xiàng)球類運(yùn)動(dòng)進(jìn)行了統(tǒng)計(jì),將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請你依據(jù)以上的信息回答下列問題:

1)求本次被調(diào)查的學(xué)生人數(shù);

2)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

3)若全校有4000名學(xué)生,請你估計(jì)該校最喜歡籃球和足球運(yùn)動(dòng)的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.

(1)求證:AB=AC;

(2)若AB=4,BC=,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的BC邊上一點(diǎn)O為圓心,經(jīng)過A,C兩點(diǎn)且與BC邊交于點(diǎn)E,點(diǎn)D為CE的下半圓弧的中點(diǎn),連接AD交線段EO于點(diǎn)F,若AB=BF.

(1)求證:AB是O的切線;

(2)若CF=4,DF=,求⊙O的半徑r及sinB.

查看答案和解析>>

同步練習(xí)冊答案