【題目】如圖,航拍無人機從A處測得一幢建筑物頂部B處的仰角為45°、底部C處的俯角為65°,此時航拍無人機A處與該建筑物的水平距離AD80米.求該建筑物的高度BC(精確到1米).(參考數(shù)據(jù):sin65°=0.91,cos65°=0.42,tan65°=2.14)

【答案】建筑物的高度BC約為251

【解析】

RtABD中,根據(jù)正切函數(shù)求得BDADtanBAD,在RtACD中,根據(jù)正切函數(shù)求得CDADtanCAD,再計算BDCD的和即可得出答案.

RtABD中,

AD=80,BAD=45°,

BDADtanBADADtan45°=80×1=80(米),

RtACD中,

AD=80,CAD=65°,

CDADtan65°=80×2.14=171.2(米),

BCBD+CD=80+171.2=251.2≈251(米).

答:該建筑物的高度BC約為251米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=6,過點C的直線MN∥AB,D為AB上一點,過點D作DE⊥BC,交直線MN于點E,垂足為F,連接CD,BE.

(1)當(dāng)點D是AB的中點時,四邊形BECD是什么特殊四邊形?說明你的理由;

(2)在(1)的條件下,當(dāng)∠A等于多少度時,四邊形BECD是正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩個信封,每個信封內(nèi)各裝有四張完全相同的卡片,其中一個信封內(nèi)的四張卡片上分別寫有1,2,3,4四個數(shù),另一個信封內(nèi)的四張卡片上分別寫有5,6,7,8四個數(shù).甲,乙兩人商定了一個游戲,規(guī)則是:從這兩個信封中各隨機抽取一張卡片,然后把卡片上的兩個數(shù)相乘,如果得到的積大于16,則甲獲勝,否則乙獲勝.

(1)請你通過列表(或畫樹狀圖)計算甲獲勝的概率;

(2)你認(rèn)為這個游戲公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知BC是⊙O的直徑,點DBC延長線上一點,AB=AD,AE是⊙O的弦,∠AEC=30°.

(1)求證:直線AD是⊙O的切線;

(2)若AEBC,垂足為M,O的半徑為4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,四邊形ABCD中,E是對角線AC上一點,DE=EC,以AE為直徑的⊙O與邊CD相切于點D,點B在⊙O上,連接OB.

(1)求證:DE=OE;

(2)若CDAB,求證:BC是⊙O的切線;

(3)在(2)的條件下,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們,在我們進入高中以后,將還會學(xué)到下面三角函數(shù)公式:

sin (αβ)sinαcosβcosαsinβ

cos (αβ)cosαcosβsinαsinβ

例:sin 15°sin (45°30°)sin 45°cos 30°cos 45°sin 30°

(1)試仿照例題,求出cos 15°的準(zhǔn)確值;

(2)我們知道,tanα,試求出tan 15°的準(zhǔn)確值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yx2x

(1)在平面直角坐標(biāo)系內(nèi),畫出該二次函數(shù)的圖象;

(2)根據(jù)圖象寫出:當(dāng)x   時,y>0;

當(dāng)0<x<4時,y的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC是邊長為1的正方形,OCx軸正半軸的夾角為15°,點B在拋物線y=ax2(a<0)的圖象上,則a的值為( 。

A. B. C. ﹣2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)yy在第一象限內(nèi)的圖象如圖,點Py的圖象上一動點,PCx軸于點C,交y的圖象于點B.給出如下結(jié)論:①△ODBOCA的面積相等;②PAPB始終相等;③四邊形PAOB的面積大小不會發(fā)生變化;④CAAP.其中所有正確結(jié)論的序號是(  )

A. ①②③ B. ②③④ C. ①③④ D. ①②④

查看答案和解析>>

同步練習(xí)冊答案