13、如果x2+bx+16=(x-4)2,則b的值為( 。
分析:先把原式的右邊利用完全平方公式展開,再利用等式的對應項的系數(shù)相等可求b.
解答:解:∵x2+bx+16=(x-4)2,
∴x2+bx+16=x2-8x+16,
∴b=-8.
故選C.
點評:本題考查了完全平方公式.(a±b)2=a2±2ab+b2
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•龍崗區(qū)模擬)已知拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且拋物線的對稱軸是直線x=-2.
(1)求此拋物線的表達式;
(2)連接AC、BC,若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出S是否存在最大值?若存在,請求出S的最大值,并求出此時點E的坐標,
(3)點P是拋物線對稱軸上一動點,拋物線上是否存在一點Q,使得以A、B、P、Q為頂點的四邊形為平行四邊形?如果存在,請直接寫出Q點坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本小題滿分12分)
如圖,在平面直角坐標系中,矩形OABC的兩邊分別在x軸和y軸上,OA="16" cm, OC=8cm,現(xiàn)有兩動點P、Q分別從O、C同時出發(fā),P在線段OA上沿OA方向以每秒2cm的速度勻速運動,Q在線段CO上沿CO方向以每秒1cm的速度勻速運動.設(shè)運動時間為t秒.
(1)用含t的式子表示△OPQ的面積S;
(2)判斷四邊形OPBQ的面積是否是一個定值,如果是,請求出這個定值;如果不是,請說明理由;
(3)當△OPQ∽△ABP時,拋物線yx2+bx+c經(jīng)過B、P兩點,求拋物線的解析式;
(4)在(3)的條件下,過線段BP上一動點M軸的平
行線交拋物線于N,求線段MN的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年河北省石家莊市42中學九年級第一次模擬考試數(shù)學卷 題型:計算題

(本小題滿分12分)
如圖,在平面直角坐標系中,矩形OABC的兩邊分別在x軸和y軸上,OA="16" cm, OC=8cm,現(xiàn)有兩動點P、Q分別從O、C同時出發(fā),P在線段OA上沿OA方向以每秒2cm的速度勻速運動,Q在線段CO上沿CO方向以每秒1cm的速度勻速運動.設(shè)運動時間為t秒.
(1)用含t的式子表示△OPQ的面積S;
(2)判斷四邊形OPBQ的面積是否是一個定值,如果是,請求出這個定值;如果不是,請說明理由;
(3)當△OPQ∽△ABP時,拋物線yx2+bx+c經(jīng)過B、P兩點,求拋物線的解析式;
(4)在(3)的條件下,過線段BP上一動點M軸的平
行線交拋物線于N,求線段MN的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年福建省莆田市仙游縣東宅中學九年級(上)第一次月考數(shù)學試卷(解析版) 題型:選擇題

如果x2+bx+16=(x-4)2,則b的值為( )
A.-4
B.4
C.-8
D.8

查看答案和解析>>

同步練習冊答案