【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是 .
【答案】﹣.
【解析】
試題分析:根據(jù)菱形的性質(zhì)得出△DAB是等邊三角形,進而利用全等三角形的判定得出△ABG≌△DBH,得出四邊形GBHD的面積等于△ABD的面積,進而求出即可.
解:如圖,連接BD.
∵四邊形ABCD是菱形,∠A=60°,
∴∠ADC=120°,
∴∠1=∠2=60°,
∴△DAB是等邊三角形,
∵AB=2,
∴△ABD的高為,
∵扇形BEF的半徑為2,圓心角為60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
設(shè)AD、BE相交于點G,設(shè)BF、DC相交于點H,
在△ABG和△DBH中,,
∴△ABG≌△DBH(ASA),
∴四邊形GBHD的面積等于△ABD的面積,
∴圖中陰影部分的面積是:S扇形EBF﹣S△ABD=﹣×2×=﹣.
故答案是:﹣.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某學(xué)校有(5a2+4a+1)名學(xué)生正在參加植樹活動,為了支援兄弟學(xué)校,決定從該校抽調(diào)(5a2+7a)名學(xué)生去支援兄弟學(xué)校,則剩余的學(xué)生人數(shù)是( )
A. -3a-1 B. -3a+1 C. -11a+1 D. 11a-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對于圖中標記的各角,下列條件能夠推理得到a∥b的是( 。
A. ∠1=∠4 B. ∠2=∠4 C. ∠3+∠2=∠4 D. ∠2+∠3+∠4=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的對稱軸是直線x=1,且經(jīng)過點(0,2).有下列結(jié)論:
①ac>0;②b2﹣4ac>0;③a+c<2﹣b;④a<﹣;⑤x=﹣5和x=7時函數(shù)值相等.
其中正確的結(jié)論有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點C按如圖方式疊放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):
(1)①若∠DCE=45°,則∠ACB的度數(shù)為 ;
②若∠ACB=140°,求∠DCE的度數(shù);
(2)由(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說明理由.
(3)當(dāng)∠ACE<180°且點E在直線AC的上方時,這兩塊三角尺是否存在一組邊互相平行?若存在,請直接寫出∠ACE角度所有可能的值(不必說明理由);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=AC.D,E是斜邊BC上兩點,且∠DAE=45°,將△ADC繞點A順時針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論:
①△AED≌△AEF;
②△ABE∽△ACD;
③BE+DC=DE;
④BE2+DC2=DE2.
其中正確的是( )
A.②④ B.①④ C.②③ D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀,然后解答提出的問題:
設(shè)a,b是有理數(shù),且滿足a+b=3﹣2,求ba的值.
解:由題意得(a﹣3)+(b+2)=0,因為a,b都是有理數(shù),所以a﹣3,b+2也是有理數(shù),
由于是無理數(shù),所以a﹣3=0,b+2=0,所以a=3,b=﹣2,所以ba=(﹣2)3=﹣8.問題:設(shè)x,y都是有理數(shù),且滿足x2﹣2y+y=8+4,求x+y的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com