如圖,拋物線與x軸交于點A(3,0),B(8,0),與y軸交于點C,且AC平分∠OCB,直線l是它的對稱軸.
(1)求直線l和拋物線的解析式;
(2)直線BC與l相交于點D,沿直線l平移直線BC,與直線l,y軸分別交于點E,F(xiàn),探究四邊形CDEF為菱形時點E的坐標;
(3)線段CB上有一動點P,從C點開始以每秒一個單位的速度向B點運動,PM⊥BC,交線段CA于點M,記點P運動時間為t,△CPO與△CPM的面積之差為y,求y與t(0<t≤6)之間的關(guān)系式,并確定在運動過程中y的最大值.  
【答案】分析:(1)利用A(3,0),B(8,0)的橫坐標,求出直線l表達式,即3與8的平均數(shù)即為l的表達式;
(2)在Rt△ABC中,求出tanB=,BC=,cosB=,然后求出D點坐標,用BC-DB=10-=表示出CD的長,進而求出E點坐標;
(3)過點P作PL⊥OC,垂足為L,則∠CPL=∠B,由題意得CP=t,則LP=CP,表示出△CPO的面積為:,在Rt△AOC中,表示出△CPM的面積為,從而得到 (0<t≤6),進而求出最大值.
解答:解:(1)直線l的解析式x==
如圖,過A作AK⊥BC于點K,
∵AC平分∠OCB,
∴AK=OA=3,CK=OC,AB=5,
∴KB=4.
方法一:設(shè)OC=x則CB=x+4,由勾股定理得:x2+82=(x+4)2,得x=6,
∴C的坐標為(0,6).
方法二:由△ABK∽△CBO得,得OC=6,
∴C的坐標為(0,6)
設(shè)拋物線解析式為:y=a(x-3)(x-8),將點C坐標代入可得,
∴所求拋物線解析式為:

(2)方法一:
如圖,記直線l與x軸交于點N,則NB=2.5,
∵在Rt△OBC中,tanB=,BC=,
cosB=,則DN=NB•tanB==
DB==,
∴D點坐標為().
CD=BC-DB=10-=即菱形邊長為+=,-=-5,
∴E點坐標為(,)或(,-5).
方法二:四邊形CDEF為菱形時,有兩種情況:
①當BC往下平移時,由菱形性質(zhì)知,點E1即為直線CA與對稱軸交點.
求得直線AC方程為:y=-2x+6,
與對稱軸的交點為E1,-5).
②當BC往上平移時,即D點往上平移菱形的邊長個單位得E2
求得直線BC:,與對稱軸交點D的縱坐標為yD=,
菱形邊長為yD-yE=-(-5)=,E2點縱坐標為:+=.                                         
∴四邊形CDEF為菱形時,E1,-5),E2,).
(3)過點P作PL⊥OC,垂足為L,則∠CPL=∠B,
而Rt△BOC中,sin∠B==,cos∠B=,
由題意得CP=t,則LP=CPcos∠B=,
△CPO的面積為:,
∵CA平分∠OCB,
∴∠MCP=∠OCA,
Rt△AOC中,tan∠OCA==,
∴PM=
△CPM的面積為:,
 (0<t≤6),
時,y有最大值為
點評:本題考查了二次函數(shù)綜合題,涉及待定系數(shù)法求二次函數(shù)解析式、動點問題、函數(shù)最值、配方法等知識,是一道綜合性很強的題目,有一定難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線與x軸交于A(-1,0)、B(3,0)兩點,與y軸交于點C(0,-3),設(shè)拋物線的頂點為D.
(1)求該拋物線的解析式與頂點D的坐標;
(2)以B、C、D為頂點的三角形是直角三角形嗎?為什么?
(3)探究坐標軸上是否存在點P,使得以P、A、C為頂點的三角形與△BCD相似?若存在,請指出符合條件的點P的位置,并直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線與x軸交于A(x1,0)、B(x2,0)兩點,且x1<x2,與y軸交于點C(0,-4),其中x1,x2是方程x2-4x-12=0的兩個根.
(1)求拋物線的解析式;
(2)點M是線段AB上的一個動點,過點M作MN∥BC,交AC于點N,連接CM,當△CMN的面積最大時,求點M的坐標;
(3)點D(4,k)在(1)中拋物線上,點E為拋物線上一動點,在x軸上是否存在點F,使以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•歷下區(qū)一模)如圖,拋物線與x軸交于A(-1,0),B(4,0)兩點,與y軸交于C(0,3),M是拋物線對稱軸上的任意一點,則△AMC的周長最小值是
10
+5
10
+5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與y軸交于點A(0,4),與x軸交于B、C兩點.其中OB、OC是方程的x2-10x+16=0兩根,且OB<OC.
(1)求拋物線的解析式;
(2)直線AC上是否存在點D,使△BCD為直角三角形.若存在,求所有D點坐標;反之說理;
(3)點P為x軸上方的拋物線上的一個動點(A點除外),連PA、PC,若設(shè)△PAC的面積為S,P點橫坐標為t,則S在何范圍內(nèi)時,相應(yīng)的點P有且只有1個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與x軸交于A、B(6,0)兩點,且對稱軸為直線x=2,與y軸交于點C(0,-4).
(1)求拋物線的解析式;
(2)點M是拋物線對稱軸上的一個動點,連接MA、MC,當△MAC的周長最小時,求點M的坐標;
(3)點D(4,k)在(1)中拋物線上,點E為拋物線上一動點,在x軸上是否存在點F,使以A、D、E、F為頂點的四邊形是平行四邊形,如果存在,直接寫出所有滿足條件的點F的坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案