精英家教網 > 初中數學 > 題目詳情
(2012•廈門)已知a+b=2,ab=-1,則3a+ab+3b=
5
5
;a2+b2=
6
6
分析:由3a+ab+3b=3(a+b)+ab與a2+b2=(a+b)2-2ab,將a+b=2,ab=-1代入即可求得答案.
解答:解:∵a+b=2,ab=-1,
∴3a+ab+3b=3a+3b+ab=3(a+b)+ab=3×2+(-1)=5;
a2+b2=(a+b)2-2ab=22-2×(-1)=6.
故答案為:5,6.
點評:此題考查了完全平方公式的應用.此題難度不大,注意掌握公式變形是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•廈門)已知∠A=40°,則∠A的余角的度數是
50°
50°

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•廈門)已知:如圖,在△ABC中,∠C=90°,點D、E分別在邊AB、AC上,DE∥BC,DE=3,BC=9
(1)求
ADAB
的值;
(2)若BD=10,求sin∠A的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•廈門)已知點A(1,c)和點B(3,d)是直線y=k1x+b與雙曲線y=
k2
x
(k2>0)的交點.
(1)過點A作AM⊥x軸,垂足為M,連接BM.若AM=BM,求點B的坐標.
(2)若點P在線段AB上,過點P作PE⊥x軸,垂足為E,并交雙曲線y=
k2
x
(k2>0)于點N.當
PN
NE
取最大值時,有PN=
1
2
,求此時雙曲線的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•廈門)已知:⊙O是△ABC的外接圓,AB為⊙O的直徑,弦CD交AB于E,∠BCD=∠BAC.
(1)求證:AC=AD;
(2)過點C作直線CF,交AB的延長線于點F,若∠BCF=30°,則結論“CF一定是⊙O的切線”是否正確?若正確,請證明;若不正確,請舉反例.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•廈門)已知平行四邊形ABCD,對角線AC和BD相交于點O,點P在邊AD上,過點P作PE⊥AC,PF⊥BD,垂足分別為E、F,PE=PF.
(1)如圖,若PE=
3
,EO=1,求∠EPF的度數;
(2)若點P是AD的中點,點F是DO的中點,BF=BC+3
2
-4,求BC的長.

查看答案和解析>>

同步練習冊答案