【題目】如圖,正方形ABCD和正方形CEFG的邊長(zhǎng)分別為a和b,正方形CEFG繞點(diǎn)C旋轉(zhuǎn),給出下列結(jié)論:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正確結(jié)論是(  )

A. B. C. ①②D. ①②③

【答案】D

【解析】

根據(jù)正方形的性質(zhì)易證△DCG≌△BEC,即可證得BE=DG,BE⊥DG,由此判斷①②正確;根據(jù)勾股定理可得BD2=DM2+BM2,EG2=ME2+MG2,則BD2+EG2=DM2+BM2+ME2+MG2,可得BD2+EG2=BG2+DE2.再把a,b代入即可證得③正確

如圖:連接BD,EG,BE,DG的交點(diǎn)為M

∵四邊形ABCD,四邊形CEFG 為正方形

∴BC=DC,CG=CE,∠BCD=∠ECG,

∴∠BCE=∠DCG,且BC=DC,CG=CE,

∴△BCE≌△DCG,

∴DG=BE,∠CBE=∠CDE,

∵∠DBE+∠EBC+∠BDC+∠BCD=180°,

∴∠DBE+∠EBC+∠BDC=90°,

∵∠DBE+∠CDE+∠BDC+∠BMD=180°,

∴∠DCB=∠DMB=90°,

∴BE⊥DG故①②正確.

∵BE⊥DG,

∴BD2=DM2+BM2,EG2=ME2+MG2,

∴BD2+EG2=DM2+BM2+ME2+MG2,

∴BD2+EG2=BG2+DE2

∴AB2+AD2+EC2+CG2=BG2+DE2

∴2a2+2b2=BG2+DE2,故③正確

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把平面內(nèi)一條數(shù)軸x繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)角θ0°<θ90°)得到另一條數(shù)軸y,x軸和y軸構(gòu)成一個(gè)平面斜坐標(biāo)系.規(guī)定:已知點(diǎn)P是平面斜坐標(biāo)系中任意一點(diǎn),過(guò)點(diǎn)Py軸的平行線(xiàn)交x軸于點(diǎn)A,過(guò)點(diǎn)Px軸的平行線(xiàn)交y軸于點(diǎn)B,若點(diǎn)Ax軸上對(duì)應(yīng)的實(shí)數(shù)為a,點(diǎn)By軸上對(duì)應(yīng)的實(shí)數(shù)為b,則稱(chēng)有序?qū)崝?shù)對(duì)(ab)為點(diǎn)P的斜坐標(biāo).在平面斜坐標(biāo)系中,若θ45°,點(diǎn)P的斜坐標(biāo)為(12),點(diǎn)G的斜坐標(biāo)為(7,﹣2),連接PG,則線(xiàn)段PG的長(zhǎng)度是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD的周長(zhǎng)為36,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),BD=12,則△DOE的周長(zhǎng)為( 。

A. 15 B. 18 C. 21 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中央電視臺(tái)的“中國(guó)詩(shī)詞大賽”節(jié)目文化品位高內(nèi)容豐富,某校初二年級(jí)模擬開(kāi)展“中國(guó)詩(shī)詞大賽”比賽對(duì)全年級(jí)同學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個(gè)等級(jí),并根據(jù)成績(jī)繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,回答下列問(wèn)題

1)扇形統(tǒng)計(jì)圖中“優(yōu)秀”所對(duì)應(yīng)的扇形的圓心角為 ,并將條形統(tǒng)計(jì)圖補(bǔ)充完整.

2)此次比賽有四名同學(xué)活動(dòng)滿(mǎn)分分別是甲、乙、丙、丁現(xiàn)從這四名同學(xué)中挑選兩名同學(xué)參加學(xué)校舉行的“中國(guó)詩(shī)詞大賽”比賽,請(qǐng)用列表法或畫(huà)樹(shù)狀圖法求出選中的兩名同學(xué)恰好是甲、丁的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料,回答問(wèn)題:

小聰學(xué)完了銳角三角函數(shù)的相關(guān)知識(shí)后,通過(guò)研究發(fā)現(xiàn):如圖1,在RtABC中,如果∠C=90°,=30°,BC═a=1,AC=b=,AB=c=2,那么==2.通過(guò)上網(wǎng)查閱資料,他又知“sin90°=1”,因此他得到在含30°角的直角三角形中,存在著==的關(guān)系.

這個(gè)關(guān)系對(duì)于一般三角形還適用嗎?為此他做了如下的探究:

(1)如圖2,在RABC中,∠C=90°,BC=a,AC=b,AB=C,請(qǐng)判斷此時(shí)==的關(guān)系是否成立?答:   

(2)完成上述探究后,他又想對(duì)于任意的銳角ABC,上述關(guān)系還成立嗎?因此他又繼續(xù)進(jìn)行了如下的探究:

如圖3,在銳角ABC中,BC=a,AC=b,AB=c,請(qǐng)判斷此時(shí) ==的關(guān)系是否成立?并證明你的判斷.(提示:過(guò)點(diǎn)CCDABD,過(guò)點(diǎn)AAHBC,再結(jié)合定義或其它方法證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以水潤(rùn)城,打造四河一庫(kù)生態(tài)水系工程,是鞏義堅(jiān)持不懈推進(jìn)文明創(chuàng)建與百城提質(zhì)深度融合的縮影,伊洛河畔正是此項(xiàng)目中的一段.如今,伊洛河畔需要鋪設(shè)一條長(zhǎng)為米的管道,決定由甲、乙兩個(gè)工程隊(duì)來(lái)完成.已知甲工程隊(duì)比乙工程隊(duì)每天能多鋪設(shè)米,且甲工程隊(duì)鋪設(shè)米所用的天數(shù)與乙工程隊(duì)鋪設(shè)米所用的天數(shù)相同.(完成任務(wù)的工期為整數(shù))

1)甲、乙工程隊(duì)每天各能鋪設(shè)多少米?

2)如果要求完成該項(xiàng)管道鋪設(shè)任務(wù)的工期不超過(guò)天,那么為兩工程隊(duì)分配工程量的方案有幾種?請(qǐng)你幫助設(shè)計(jì)出來(lái)(工程隊(duì)分配工程量為整百數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校對(duì)九年級(jí)(1)班全體學(xué)生進(jìn)行體育測(cè)試,測(cè)試成績(jī)分為優(yōu)秀、良好、合格和不合格四個(gè)等級(jí),根據(jù)測(cè)試成績(jī)繪制的不完整統(tǒng)計(jì)圖表如下:

九年級(jí)(1)班體育成績(jī)頻數(shù)分布表:

等級(jí)

分值

頻數(shù)

優(yōu)秀

 90﹣100

良好

 75﹣89

 13

合格

 60﹣74

不合格

 0﹣59

 9

根據(jù)統(tǒng)計(jì)圖表給出的信息,解答下列問(wèn)題:

(1)九年級(jí)(1)班共有多少名學(xué)生?

(2)體育成績(jī)?yōu)閮?yōu)秀的頻數(shù)是   ,合格的頻數(shù)為   ;

(3)若對(duì)該班體育成績(jī)達(dá)到優(yōu)秀程度的3個(gè)男生和2個(gè)女生中隨機(jī)抽取2人參加學(xué)校體育競(jìng)賽,恰好抽到1個(gè)男生和1個(gè)女生的概率是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知□ABCD中,AEBCE,AFCDF □ABCD的周長(zhǎng)為72cm,AE=8cm,AF=10cm,求□ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)(是常數(shù),)在同一平面直角坐標(biāo)系的圖象可能是(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案