如圖,在直角梯形ABCD中,AD∥CB, ,動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿射線DA的方向以每秒2個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線段CB上以每秒一個(gè)單位長(zhǎng)的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)P,Q分別從點(diǎn)D,C同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)P隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).
(1)設(shè)△BPQ的面積為S,求S與t之間的函數(shù)關(guān)系式;
(2)當(dāng)t為何值時(shí),四邊形ABQP是平行四邊形.
(3)當(dāng)t為何值時(shí),以B,P,Q三點(diǎn)為頂點(diǎn)的三角形是等腰三角形?
【
(1)S=96-6t(0≤t<16).(2)5;(3)t=或t=
【解析】
試題解析:(1)過(guò)點(diǎn)P作PM⊥BC于M,則四邊形PDCM為矩形.
∴PM=DC=12,
∵QB=16-t,
∴s=QB•PM=(16-t)×12=96-6t(0≤t<16).
(2)當(dāng)四邊形ABQP是平行四邊形時(shí),AP=BQ,
即21-2t=16-t,
解得:t=5,
∴當(dāng)t=5時(shí),四邊形ABQP是平行四邊形.
③若PB=PQ,由PB2=PQ2得t2+122=(16-2t)2+122得t1=,t2=16(不合題意,舍去).
綜上所述,當(dāng)t=或t=時(shí),以B,P,Q三點(diǎn)為頂點(diǎn)的三角形是等腰三角形.
考點(diǎn):1.直角梯形;2.等腰三角形的判定;3.勾股定理;4.平行四邊形的判定.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,正六邊形的邊長(zhǎng)為π,半徑是1的⊙O從與AB相切于點(diǎn)D的位置出發(fā),在正六邊形外部按順時(shí)針?lè)较蜓卣呅螡L動(dòng),又回到與AB相切于點(diǎn)D的位置,則⊙O自轉(zhuǎn)了【 】
A.4周 B.5周 C.6周 D.7周
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,在直角坐標(biāo)系中放置一個(gè)矩形ABCD,其中AB=2,AD=1,將矩形ABCD沿x軸的正方向無(wú)滑動(dòng)的在x軸上滾動(dòng),當(dāng)點(diǎn)A離開(kāi)原點(diǎn)后第一次落在x軸上時(shí),點(diǎn)A運(yùn)動(dòng)的路徑線與x軸圍成的面積為
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,扇形OAB中,∠AOB=60°,扇形半徑為4,點(diǎn)C在上,CD⊥OA,垂足為點(diǎn)D,當(dāng)△OCD的面積最大時(shí),圖中陰影部分的面積為 ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,∠MON=90°,A、B分別是OM、ON上的點(diǎn),OB=4.點(diǎn)C是線段AB的中點(diǎn),將線段AC以點(diǎn)A為旋轉(zhuǎn)中心,沿順時(shí)針?lè)较蛐D(zhuǎn)90°,得到線段AD,過(guò)點(diǎn)B作ON的垂線.
(1)當(dāng)點(diǎn)D恰好落在垂線上時(shí),求OA的長(zhǎng);
(2)過(guò)點(diǎn)D作DE⊥OM于點(diǎn)E,將(1)問(wèn)中的△AOB以每秒2個(gè)單位的速度沿射線OM方向平移,記平移中的△AOB為△,當(dāng)點(diǎn)O′與點(diǎn)E重合時(shí)停止平移.設(shè)平移的時(shí)間為t秒,△與△DAE重疊部分的面積為S,請(qǐng)直接寫出S與t之間的函數(shù)關(guān)系式以及自變量t的取值范圍;
(3)在(2)問(wèn)的平移過(guò)程中,若與線段交于點(diǎn)P,連接,,,是否存在這樣的t,使△是等腰三角形?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,矩形ABCD中,AB=3,BC=4,將矩形ABCD沿對(duì)角線AC平移,平移后的矩形為EFGH(A、E、C、G始終在同一條直線上),當(dāng)點(diǎn)E與C重合時(shí)停止移動(dòng).平移中EF與BC交于點(diǎn)N,GH與BC的延長(zhǎng)線交于點(diǎn)M,EH與DC交于點(diǎn)P,F(xiàn)G與DC的延長(zhǎng)線交于點(diǎn)Q.設(shè)S表示矩形PCMH的面積,表示矩形NFQC的面積
(1)S與嗎?請(qǐng)說(shuō)明理由.
(2)設(shè)AE=x,寫出S和x之間的函數(shù)關(guān)系式,并求出x取何值時(shí)S有最大值,最大值是多少?
(3)如圖2,連結(jié)BE,當(dāng)AE為何值時(shí),是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在直角梯形ABCD中,AD // BC,∠B=90°,AD=24cm,BC=26cm,動(dòng)點(diǎn)P從A點(diǎn)開(kāi)始沿AD邊向D以3cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始沿CB邊向點(diǎn)B以1cm/s的速度運(yùn)動(dòng),點(diǎn)P、Q分別從A、C同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t (s).
⑴當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).
①當(dāng)t為何值時(shí),以CD、PQ為兩邊,以梯形的底(AD或BC)的一部分(或全部)為第三邊能構(gòu)成一個(gè)三角形;②當(dāng)t為何值時(shí),四邊形PQCD為等腰梯形.
⑵若點(diǎn)P從點(diǎn)A開(kāi)始沿射線AD運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時(shí),點(diǎn)P也隨之停止運(yùn)動(dòng).當(dāng)t為何值時(shí),以P、Q、C、D為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖1,矩形MNPQ中,點(diǎn)E、F、G、H分別在NP、PQ、QM、MN上,若,則稱四邊形EFGH為矩形MNPQ的反射四邊形.在圖2、圖3中,四邊形ABCD為矩形,且,.
(1)在圖2、圖3中,點(diǎn)E、F分別在BC、CD邊上,圖2中的四邊形EFGH是利用正方形網(wǎng)格在圖上畫出的矩形ABCD的反射四邊形.請(qǐng)你利用正方形網(wǎng)格在圖3上畫出矩形ABCD的反射四邊形EFGH;
(2)圖2、圖3中矩形ABCD的反射四邊形EFGH的周長(zhǎng)是否為定值?若是定值,請(qǐng)直接寫出這個(gè)定值;若不是定值,請(qǐng)直接寫出圖2、圖3中矩形ABCD的反射四邊形EFGH的周長(zhǎng)各是多少;
(3)圖2、圖3中矩形ABCD的反射四邊形EFGH的面積是否為定值?若是定值,請(qǐng)直接寫出這個(gè)定值;若不是定值,請(qǐng)直接寫出圖2、圖3中矩形ABCD的反射四邊形EFGH的面積各是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
閱讀下列文字與例題
將一個(gè)多項(xiàng)式分組后,可提公因式或運(yùn)用公式繼續(xù)分解的方法是分組分解法。
例如:(1),
(2)。
試用上述方法分解因式 。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com