【題目】已知點P在一次函數(shù)y=kx+bkb為常數(shù),且k0,b0)的圖象上,將點P向左平移1個單位,再向上平移2個單位得到點Q,點Q也在該函數(shù)y=kx+b的圖象上.

1k的值是 ;

2)如圖,該一次函數(shù)的圖象分別與x軸、y軸交于A,B兩點,且與反比例函數(shù)y=圖象交于C,D兩點(點C在第二象限內(nèi)),過點CCE⊥x軸于點E,記S1為四邊形CEOB的面積,S2△OAB的面積,若=,則b的值是

【答案】1-2;(23

【解析】

試題(1)設(shè)出點P的坐標(biāo),根據(jù)平移的特性寫出點Q的坐標(biāo),由點P、Q均在一次函數(shù)y=kx+bk,b為常數(shù),且k0,b0)的圖象上,即可得出關(guān)于km、n、b的四元一次方程組,兩式做差即可得出k值;(2)根據(jù)BO⊥x軸,CE⊥x軸可以找出△AOB∽△AEC,再根據(jù)給定圖形的面積比即可得出,根據(jù)一次函數(shù)的解析式可以用含b的代數(shù)式表示出來線段AO、BO,由此即可得出線段CEAE的長度,利用OE=AE﹣AO求出OE的長度,再借助于反比例函數(shù)系數(shù)k的幾何意義即可得出關(guān)于b的一元二次方程,解方程即可得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c的頂點為D-1,2),與x軸的一個交點A在點(-3,0)和(-20)之間,其部分圖象如圖,則以下結(jié)論:①b2-4ac0;②當(dāng)x-1yx增大而減;③a+b+c0④若方程ax2+bx+c-m=0沒有實數(shù)根,則m23a+c0.其中,正確結(jié)論的序號是________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:sin﹣x=﹣sinx,cos﹣x=cosxsinx+y=sinxcosy+cosxsiny

據(jù)此判斷下列等式成立的是 (寫出所有正確的序號)

①cos﹣60°=﹣;

②sin75°=

③sin2x=2sinxcosx;

④sinx﹣y=sinxcosy﹣cosxsiny

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的布袋里裝有4個完全相同的標(biāo)有數(shù)字1、2、3、4的小球. 小明從布袋里隨機取出一個小球,記下數(shù)字為x,小紅從布袋里剩下的小球中隨機取出一個,記下數(shù)字為y. 計算由x、y確定的點(x,y)在函數(shù)y=-x+5的圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為8,上一點, ,邊上的一個動點,分別以為邊在正方形內(nèi)部作等邊三角形和等邊三角形.

(1)證明:

(2)直線交于點,點在運動過程中.

的度數(shù)是否發(fā)生改變?若不變,求出這個角的度數(shù);若改變,說明理由;

②連結(jié),求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.

(1)求二次函數(shù)的表達式;

(2)y軸上是否存在一點P,使PBC為等腰三角形.若存在,請求出點P的坐標(biāo);

(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當(dāng)點M 達點B時,點M、N同時停止運動,問點M、N運動到何處時,MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是⊙O的直徑,點A是半圓上的三等分點,點B是劣弧AN的中點,點P是直徑MN上一動點.若MN=2,AB=1,則△PAB周長的最小值是( 。

A. 2+1 B. +1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,若AC=4,BC=3,AB=5,則△ABC的內(nèi)切圓半徑R=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,的平分線相交于點,過,交于點,交于點.,則線段的長為______

查看答案和解析>>

同步練習(xí)冊答案