【題目】如圖,拋物線(xiàn),b是常數(shù),且≠0)與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C.并且A,B兩點(diǎn)的坐標(biāo)分別是A(1,0)B(3,0)

1)①求拋物線(xiàn)的解析式;②頂點(diǎn)D的坐標(biāo)為_______;③直線(xiàn)BD的解析式為______

2)若P為線(xiàn)段BD上的一個(gè)動(dòng)點(diǎn),其橫坐標(biāo)為m,過(guò)點(diǎn)PPQx軸于點(diǎn)Q,求當(dāng)m為何值時(shí),四邊形PQOC的面積最大?

3)若點(diǎn)M是拋物線(xiàn)在第一象限上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)MMNAC軸于點(diǎn)N.當(dāng)點(diǎn)M的坐標(biāo)為_______時(shí),四邊形MNAC是平行四邊形.

【答案】1)①;②(1,4);③;(2)當(dāng)時(shí),S最大值=;(3(2,3)

【解析】

1)①把點(diǎn)A、點(diǎn)B的坐標(biāo)代入,求出,b即可;②根據(jù)頂點(diǎn)坐標(biāo)公式求解;③設(shè)直線(xiàn)BD的解析式為,將點(diǎn)B、點(diǎn)D的坐標(biāo)代入即可;

2)求出點(diǎn)C坐標(biāo),利用直角梯形的面積公式可得四邊形PQOC的面積s與m的關(guān)系式,可求得面積的最大值;

3)要使四邊形MNAC是平行四邊形只要即可,所以點(diǎn)M與點(diǎn)C的縱坐標(biāo)相同,由此可求得點(diǎn)M坐標(biāo).

解:(1)①把A(-1,0),B3,0)代入,得

解得

②當(dāng)時(shí),

所以頂點(diǎn)坐標(biāo)為(1,4

③設(shè)直線(xiàn)BD的解析式為,將點(diǎn)B3,0)、點(diǎn)D1,4)的坐標(biāo)代入得

,解得

所以直線(xiàn)BD的解析式為

2)∵點(diǎn)P的橫坐標(biāo)為m,則點(diǎn)P的縱坐標(biāo)為

當(dāng)時(shí),

C0,3).

由題意可知:

OC=3,OQ=m,PQ=

s=

=

=.

∵-10,13,

∴當(dāng)時(shí),s最大值=

如圖,MNAC,要使四邊形MNAC是平行四邊形只要即可.

設(shè)點(diǎn)M的坐標(biāo)為,

可知點(diǎn)

解得0(不合題意,舍去)

當(dāng)點(diǎn)M的坐標(biāo)為(2,3)時(shí),四邊形MNAC是平行四邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠XOY=60°,點(diǎn)A在邊OX上,OA=2.過(guò)點(diǎn)AACOY于點(diǎn)C,以AC為一邊在∠XOY內(nèi)作等邊三角形ABC,點(diǎn)PABC圍成的區(qū)域(包括各邊)內(nèi)的一點(diǎn),過(guò)點(diǎn)PPDOYOX于點(diǎn)D,作PEOXOY于點(diǎn)E.設(shè)OD=a,OE=b,則a+2b的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtAOB中,∠AOB=90°,OA=3,OB=2,將RtAOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得RtFOE,將線(xiàn)段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得線(xiàn)段ED,分別以O,E為圓心,OA、ED長(zhǎng)為半徑畫(huà)弧AF和弧DF,連接AD,則圖中陰影部分面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在矩形ABCD中,AB,AD3,點(diǎn)PAD邊上的一個(gè)動(dòng)點(diǎn),連接BP,作點(diǎn)A關(guān)于直線(xiàn)BP的對(duì)稱(chēng)點(diǎn)A1,連接A1C,設(shè)A1C的中點(diǎn)為Q,當(dāng)點(diǎn)P從點(diǎn)A出發(fā),沿邊AD運(yùn)動(dòng)到點(diǎn)D時(shí)停止運(yùn)動(dòng),點(diǎn)Q的運(yùn)動(dòng)路徑長(zhǎng)為( )

A.πB.πC.πD.π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線(xiàn)yax2+bx+cx軸交于點(diǎn)A(10)、B(3,0),與y軸交于點(diǎn)C(0,﹣3).

(1)求拋物線(xiàn)的解析式;

(2)拋物線(xiàn)上是否存在一點(diǎn)P,使得∠APB=∠ACO成立?若存在,求出點(diǎn)P的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.

(3)我們規(guī)定:對(duì)于直線(xiàn)l1yk1x+b,直線(xiàn)l2yk2x+b2,若直線(xiàn)k1k2=﹣1,則直線(xiàn)l1l2;反過(guò)來(lái)也成立.請(qǐng)根據(jù)這個(gè)規(guī)定解決下列可題:

如圖2,將該拋物線(xiàn)向上平移過(guò)原點(diǎn)與直線(xiàn)ykx(k0)另交于C點(diǎn).點(diǎn)T為該二次函數(shù)圖象上位于直線(xiàn)OC下方的動(dòng)點(diǎn),過(guò)點(diǎn)T作直線(xiàn)TMOC′,重足為點(diǎn)M,且M在線(xiàn)段OC′(不與OC′重合),過(guò)點(diǎn)T作直線(xiàn)TNy軸交OC'于點(diǎn)N.若在點(diǎn)T運(yùn)動(dòng)的過(guò)程中,為常數(shù),試確定k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型商場(chǎng)出售一種時(shí)令鞋,每雙進(jìn)價(jià)100元,售價(jià)300元,則每月能售出400.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):每降價(jià)10元,則每天可多售出50.設(shè)每雙降價(jià)x元,每天總獲利y.

1)如果降價(jià)40元,每天總獲利多少元呢?

2)每雙售價(jià)為多少元時(shí),每天的總獲利最大?最大獲利是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,MN、C三點(diǎn)的坐標(biāo)分別為(1),(3,1),(3,0),點(diǎn)A為線(xiàn)段MN上的一個(gè)動(dòng)點(diǎn),連接AC,過(guò)點(diǎn)AABACy軸于點(diǎn)B,當(dāng)點(diǎn)AM運(yùn)動(dòng)到N時(shí),點(diǎn)B隨之運(yùn)動(dòng),設(shè)點(diǎn)B的坐標(biāo)為(0,b),則b的取值范圍是(  )

A.b1B.b1C.bD.b1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的OAC于點(diǎn)D,點(diǎn)EBC的中點(diǎn),連接DE

(1)求證:DEO的切線(xiàn);

(2)求證:4DE2CDAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】八(1)班為了配合學(xué)校體育文化月活動(dòng)的開(kāi)展,同學(xué)們從捐助的班費(fèi)中拿出一部分錢(qián)來(lái)購(gòu)買(mǎi)羽毛球拍和跳繩。已知購(gòu)買(mǎi)一副羽毛球拍比購(gòu)買(mǎi)一根跳繩多20元。若用200元購(gòu)買(mǎi)羽毛球拍和用80元購(gòu)買(mǎi)跳繩,則購(gòu)買(mǎi)羽毛球拍的副數(shù)是購(gòu)買(mǎi)跳繩根數(shù)的一半。

1)求購(gòu)買(mǎi)一副羽毛球拍、一根跳繩各需多少元?

2)雙11期間,商店老板給予優(yōu)惠,購(gòu)買(mǎi)一副羽毛球拍贈(zèng)送一根跳繩,如果八(1)班需要的跳繩根數(shù)比羽毛球拍的副數(shù)的倍還多,且該班購(gòu)買(mǎi)羽毛球拍和跳繩的總費(fèi)用不超過(guò)元,那么八(1)班最多可購(gòu)買(mǎi)多少副羽毛球拍?

查看答案和解析>>

同步練習(xí)冊(cè)答案