【題目】如圖1,A(0,8)、B(2,a)在直線y=﹣2x+b上,反比例函數y=(x>0)的圖象經過點B.
(1)求a和k的值;
(2)將線段AB向右平移3個單位長度,得到對應線段CD,連接AC、BD.如圖2,過點D作DE⊥x軸于點F,交反比例函數圖象與點E,求的值.
【答案】(1)a=4,k=8;(2).
【解析】
(1)先將點A坐標代入直線AB的解析式中,求出b,進而求出點B坐標,再將點B坐標代入反比例函數解析式中即可得出結論;
(2)先由點B向右平移3個單位確定出點D的坐標,進而求出點E坐標,于是求出DE,EF,即可得出結論.
解:(1)∵點A(0,8)在直線y=﹣2x+b上,
∴﹣2×0+b=8,
∴b=8,
∴直線AB的解析式為y=﹣2x+8,
將點B(2,a)代入直線AB的解析式y=﹣2x+8中,得﹣2×2+8=a,
∴a=4,
∴B(2,4),
將B(2,4)代入反比例函數解析式y=(x>0)中,得k=xy=2×4=8;
∴a=4,k=8;
(2)由(1)知,B(2,4),k=8,
∴反比例函數解析式為y=,
將線段AB向右平移3個單位長度,得到對應線段CD,
∴D(2+3,4),
即:D(5,4),
∵DF⊥x軸于點F,交反比例函數y=的圖象于點E,
∴E的坐標是E(5,),
∴DE=4﹣=,EF=,
∴==.
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,已知 AD>AB.在邊AD上取點E,連結CE.過點E作EF⊥CE,與邊AB的延長線交于點F.
(1)證明:△AEF∽△DCE.
(2)若AB=4,AE=6,AD=14,求線段AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請將寬為3cm、長為ncm的長方形(n為正整數)分割成若干小正方形,要求小正方形的邊長是正整數且個數最少.例如,當n=5cm時,此長方形可分割成如右圖的4個小正方形.
請回答下列問題:
(1)n=16時,可分割成幾個小正方形?
(2)當長方形被分割成20個小正方形時,求n所有可能的值;
(3)一般地,n>3時,此長方形可分割成多少個小正方形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為1的小正方形網格中,點A,B,C,D都在這些小正方形上,AB與CD相交于點O,則tan∠AOD等于( 。
A. B. 2C. 1D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,正方形ABCD,∠EAF=45°,
(1)如圖1,當點E,F分別在邊BC,CD上,連接EF,求證:EF=BE+DF;
(2)如圖2,點M,N分別在邊AB,CD上,且BN=DM,當點E,F分別在BM,DN上,連接EF,請?zhí)骄烤段EF,BE,DF之間滿足的數量關系,并加以證明;
(3)如圖3,當點E,F分別在對角線BD,邊CD上,若FC=2,則BE的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,邊長為的正的邊在直線上,兩條距離為的平行直線和垂直于直線,和同時向右移動(的起始位置在點),速度均為每秒個單位,運動時間為(秒),直到到達點停止,在和向右移動的過程中,記夾在和間的部分的面積為,則關于的函數圖象大致為( )
A.B.
C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AB為直徑作半圓.點D在弧上(不與A,C重合),點E在AB上,且點D.E關于AC對稱. 給出下列結論:①若∠ACE=20°,則∠BAC=25°;②若BC=3,AC=4,則;給出下列判斷,正確的是( )
A.①②都對B.①②都錯C.①對②錯D.①錯②對
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數.
(1)證明:無論m取何值,函數圖象與x軸都有兩個不相同的交點;
(2)當圖象的對稱軸為直線x=3時,求它與x軸兩交點及頂點所構成的三角形的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com