如圖,過點(diǎn)Q(0,3.5)的一次函數(shù)的圖象與正比例函數(shù)y=2x的圖象相交于點(diǎn)P,能表示這個(gè)一次函數(shù)圖象的方程是( 。
A.3x-2y+3.5=0B.3x-2y-3.5=0
C.3x-2y+7=0D.3x+2y-7=0

設(shè)這個(gè)一次函數(shù)的解析式為y=kx+b.
∵這條直線經(jīng)過點(diǎn)P(1,2)和點(diǎn)Q(0,3.5),
k+b=2
b=3.5

解得
k=-1.5
b=3.5

故這個(gè)一次函數(shù)的解析式為y=-1.5x+3.5,
即:3x+2y-7=0.
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,矩形ABCD被對角線AC分為兩個(gè)直角三角形,AB=3,BC=6.現(xiàn)將Rt△ADC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,點(diǎn)A旋轉(zhuǎn)后的位置為點(diǎn)E,點(diǎn)D旋轉(zhuǎn)后的位置為點(diǎn)F.以C為原點(diǎn),以BC所在直線為x軸,以過點(diǎn)C垂直于BC的直線為y軸,建立如圖②的平面直角坐標(biāo)系.

(1)求直線AE的解析式;
(2)將Rt△EFC沿x軸的負(fù)半軸平行移動(dòng),如圖③.設(shè)OC=x(0<x≤9),Rt△EFC與Rt△ABO的重疊部分面積為s;求當(dāng)x=1與x=8時(shí),s的值;
(3)在(2)的條件下s是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

請你根據(jù)圖中圖象所提供的信息解答下面問題:
(1)a1中變量y隨x變化而變化的情況是______;
(2)滿足圖象中條件的二元一次方程組是(  )
A、
x+y=2
x-y=1
B、
x-2y=-1
2x-y=1

C、
x+y=3
x-y=-1
D、
2x-y=1
x+2y=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,利用函數(shù)圖象回答下列問題:
(1)方程組
x+y=3
y=2x
的解為______;
(2)不等式2x>-x+3的解集為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,直線y=kx+b交坐標(biāo)軸于A(-3,0)、B(0,5)兩點(diǎn),則不等式-kx-b<0的解集是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中直接畫出函數(shù)y=|x|的圖象;若一次函數(shù)y=kx+b的圖象分別過點(diǎn)A(-1,1),B(2,2),請你依據(jù)這兩個(gè)函數(shù)的圖象寫出方程組
y=|x|
y=kx+b
的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在同一坐標(biāo)系中畫出一次函數(shù)y1=-x+1與y2=2x-2的圖象,并根據(jù)圖象回答下列問題:
(1)寫出直線y1=-x+1與y2=2x-2的交點(diǎn)P的坐標(biāo).
(2)直接寫出:當(dāng)x取何值時(shí)y1>y2;y1<y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀材料,并解答問題:
我們已經(jīng)學(xué)過了一元一次不等式的解法,對于一些特殊的不等式,我們用作函數(shù)圖象的方法求出它的解集,這也是《數(shù)學(xué)新課程標(biāo)準(zhǔn)》中所要求掌物的內(nèi)容.例如:如何求不等式
3
x
>x+2的解集呢我們可以設(shè)y1=
3
x
,y2=x+2.然后求出它們的交點(diǎn)的坐標(biāo),并在同一直角坐標(biāo)系中畫出它們的函數(shù)圖象,通過看圖,可以發(fā)現(xiàn)此不等式的解集是“x<-3或0<x<1”
用上面的知識解決問題:求不等式x2-x>x+3的解集.
(1)設(shè)函數(shù)y1=______;y2=______.
(2)兩個(gè)函數(shù)圖象的交點(diǎn)坐標(biāo)為______.
(3)在所給的直角坐標(biāo)系中畫出兩個(gè)函數(shù)的圖象(不要列表).
(4)觀察發(fā)現(xiàn):不等式x2-x>x+3的解集為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

用圖象法解方程組:
5x+4y=1
3x-2y=5

查看答案和解析>>

同步練習(xí)冊答案