已知如圖,一次函數(shù)的圖象經(jīng)過第一,二,三象限,且與反比例函數(shù)的圖象交于A,B兩點,與y軸交于點C,OB=
10
,tan∠DOB=
1
3

(1)求反比例函數(shù)的解析式;
(2)設(shè)點A的橫坐標(biāo)為m,△ABO的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)當(dāng)△OCD的面積等于
S
2
,試判斷過A、B兩點的拋物線在x軸上截得的線段長能否等精英家教網(wǎng)于3?如果能,求此時拋物線的解析式;如果不能,請說明理由.
分析:(1)根據(jù)tan∠DOB=
1
3
可知Rt△OHB中兩直角邊的比,又因為OB=10,所以可根據(jù)勾股定理求出點B的坐標(biāo),進(jìn)而求出解析式;
(2)已知A點橫坐標(biāo)m,代入反比例函數(shù)解析式,可求出A點坐標(biāo),根據(jù)OB=
10
和tan∠DOB=
1
3
,可利用勾股定理求出B點坐標(biāo);
把A、B兩點坐標(biāo)分別代入一次函數(shù)y=k2x+b的解析式,解方程組得到k2和b的值(用m表示),然后根據(jù)一次函數(shù)的性質(zhì),求出C點坐標(biāo),即得出OC的長,再求出以O(shè)C為底邊,以A、B兩點橫坐標(biāo)的絕對值為高的兩個三角形△OCA和△COB的面積之和;
(3)設(shè)出拋物線解析式,將B(-3,-1),A(1,3)分別代入解析式,求出b的值以及a、c的關(guān)系式,再根據(jù)根與系數(shù)的關(guān)系解答.
解答:精英家教網(wǎng)解:(1)過點A作AG⊥x軸于點G,過點B作BH⊥x軸于點H,在Rt△OHB中,
∵tan∠HOB=
BH
HO
=
1
3
,
∴HO=3BH,
由勾股定理得,BH2+HO2=OB2,
又∵OB=
10
,
∴BH2+(3BH)2=(
10
2,
∵BH>0,
∴BH=1,HO=3,
∴點B(-3,-1),
設(shè)反比例函數(shù)的解析式為y=
k1
x
(k1≠0),
∵點B在反比例函數(shù)的圖象上,∴k1=3,
∴反比例函數(shù)的解析式為y=
3
x


(2)設(shè)直線AB的解析式為y=k2x+b(k2≠0),由點A在第一象限,得m>0,
又有點A在函數(shù)y=
3
x
的圖象上,可求得點A的縱坐標(biāo)為(m,
3
m
).
因為tan∠DOB=
1
3
,OB=
10
,
設(shè)BH=a,則HO=3a,
于是根據(jù)勾股定理,a2+9a2=10,
解得a=±1,
則B點坐標(biāo)為(-3,-1).
把A、B兩點坐標(biāo)分別代入解析式得:
-3k+b=-1
mk+b=
3
m
,
解得k=
1
m
,b=
3-m
m
,
函數(shù)解析式為y=
1
m
x+
3-m
m
,
得C(0,
3-m
m
).
于是S=
3-m
m
(m+3)×
1
2
=
9-m2
2m
,
于是0<m<3.

(3)A、B兩點的拋物線在x軸上截得的線段長能等于3,
設(shè)過B(-3,-1),A(1,3)的拋物線解析式為y=ax2+bx+c,精英家教網(wǎng)
可得
9a-3b+c=-1
a+b+c=3
,
解得b=2a+1,c=2-3a,
又因為A、B兩點的拋物線在x軸上截得的線段長等于3,
所以設(shè)A(x1,0),(x2,0),x2>x1,
可得x2-x1=3,兩邊平方得(x2+x12-4x1x2=9,
根據(jù)根與系數(shù)的關(guān)系(-
b
a
2-4•
c
a
=9,將c=2-3a,b=2a+1代入,
得7a2-4a+1=0,
∵△=16-4×7=-12<0,
∴過A、B兩點的拋物線在x軸上截得的線段長不能等于3.
點評:此題將一次函數(shù)、二次函數(shù)、反比例函數(shù)結(jié)合起來,有很強(qiáng)的綜合性.根據(jù)圖象交點坐標(biāo)能求出相應(yīng)線段的長,轉(zhuǎn)化為一元二次方程根與系數(shù)的關(guān)系解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知如圖:一次函數(shù)y=2x與反比例函數(shù)y=
2
x
相交于A、C 兩點,過這兩點分別作AB⊥y軸,CD⊥y軸,垂足分別為B、D,連接BC和AD,則四邊形ABCD的面積是( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知如圖,一次函數(shù)的圖象經(jīng)過第一,二,三象限,且與反比例函數(shù)的圖象交于A,B兩點,與y軸交于點C,OB=數(shù)學(xué)公式,tan∠DOB=數(shù)學(xué)公式
(1)求反比例函數(shù)的解析式;
(2)設(shè)點A的橫坐標(biāo)為m,△ABO的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)當(dāng)△OCD的面積等于數(shù)學(xué)公式,試判斷過A、B兩點的拋物線在x軸上截得的線段長能否等于3?如果能,求此時拋物線的解析式;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2002•東城區(qū))已知如圖,一次函數(shù)的圖象經(jīng)過第一,二,三象限,且與反比例函數(shù)的圖象交于A,B兩點,與y軸交于點C,OB=,tan∠DOB=
(1)求反比例函數(shù)的解析式;
(2)設(shè)點A的橫坐標(biāo)為m,△ABO的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)當(dāng)△OCD的面積等于,試判斷過A、B兩點的拋物線在x軸上截得的線段長能否等于3?如果能,求此時拋物線的解析式;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年北京市東城區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•東城區(qū))已知如圖,一次函數(shù)的圖象經(jīng)過第一,二,三象限,且與反比例函數(shù)的圖象交于A,B兩點,與y軸交于點C,OB=,tan∠DOB=
(1)求反比例函數(shù)的解析式;
(2)設(shè)點A的橫坐標(biāo)為m,△ABO的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)當(dāng)△OCD的面積等于,試判斷過A、B兩點的拋物線在x軸上截得的線段長能否等于3?如果能,求此時拋物線的解析式;如果不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案