如下圖,6個一樣大的小正方形紙片,現(xiàn)要把它們粘貼在一起,拼成一個正方體的平面展開圖,然后折成一個正方體.
 
 
 
 
 
 
 
 
 
 
 
(1)  你認(rèn)為應(yīng)該怎樣粘貼才是正方體的平面展開圖?請在下面方格紙中畫你的圖.(要求畫一個即可)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(2)在你所畫的一個平面展開圖中,把1、2、3、4、5、6這六個數(shù)分別填入六個正方形中,使得翻折成正方體后,相對的兩個面上的數(shù)字的和都相等.

(1)略
(2)略
解:每問5分,教師根據(jù)學(xué)生所畫的圖形,只要是正確的都得分。
(1)能擺出正方體的平面展開圖得5分;         (5分)
(2)能正確的將1、2、3、4、5、6這六個數(shù)分別填入六個正方形中,使得翻折成正方體后,相對的兩個面上的數(shù)字的和都相等得5分。  (10分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,AB‖CD,∠A=,AB=3,CD=6,BE⊥BC交直線AD于點E.

(1)當(dāng)點E與D恰好重合時,求AD的長;
(2)當(dāng)點E在邊AD上時(E不與A、D重合),設(shè)AD=x,ED=y,試求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(3)問:是否可能使△ABE、△CDE與△BCE都相似?若能,請求出此時AD的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點P是矩形ABCD的邊AD的一個動點,矩形的兩條邊AB、BC的長分別為3和4,那么點P到矩形的兩條對角線AC和BD的距離之和是(    )

A.2.5        B.1.2          C.2.4         D.4.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD的對角線AC、BD相交于點O,△ABC≌△BAD.求證:(1)OA=OB;(2)AB∥CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖2,四邊形ABCD的對角線AC、BD互相垂直,則下列條件能判定四邊形ABCD為菱形的是(    )

A.BA=BC      B.AC、BD互相平分       C.AC=BD       D.AB∥CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一種千斤頂利用了四邊形的不穩(wěn)定性. 如圖,其基本形狀是一個菱形,中間通過螺桿連接,轉(zhuǎn)動手柄可改變的大小(菱形的邊長不變),從而改變千斤頂?shù)母叨龋碅、C之間的距離).若AB=40cm,當(dāng)變?yōu)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823003237405267.gif" style="vertical-align:middle;" />時,千斤頂升高了多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(7分)我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)寫出你學(xué)過的特殊四邊形中是勾股四邊形的兩種圖形的名稱        ,       ;
(2)如圖16(1),已知格點(小正方形的頂點),,請你畫出
以格點為頂點,為勾股邊且對角線相等的勾股四邊形;
 
(3)如圖16(2),將繞頂點按順時針方向旋轉(zhuǎn),得到,連結(jié),.求證:,即四邊形是勾股四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平行四邊形ABCD中,AC、BD交于O,添加一個條件,使之為菱形,你添加的條件可以是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

圖①是一個邊長為的正方形,小穎將圖①中的陰影部分拼成圖②的形狀,由圖①和圖②能驗證的式子是(   )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案