【題目】已知:如圖,在ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作平行四邊形ABDE,連接AD,EC.

(1)求證:AD=CE;

(2)當點D在什么位置時,四邊形ADCE是矩形,請說明理由.

【答案】(1)證明見解析;(2)點D在BC的中點上時,四邊形ADCE是矩形,理由見解析.

【解析】試題分析:(1)、根據(jù)平移得到AD平行且等于DE∠B=∠EDC,根據(jù)AB=AC得出∠B=∠ACD,AC=DE,結(jié)合DC=CD得到△ACD△ECD全等,得出AD=EC;(2)、首先得出四邊形ADCE是平行四邊形,結(jié)合AD⊥BC得出矩形.

試題解析:(1)、由平移可得AB∥DE,AB=DE; ∴∠B=∠EDC∵ AB=AC ∴∠B=∠ACD, AC=DE

∴∠EDC =∠ACD ∵DC=CD ∴△ACD≌△ECDSAS∴AD="EC"

(2)、當點DBC中點時,四邊形ADCE是矩形

理由如下:∵AB=AC,點DBC中點 ∴BD=DCAD⊥BC

由平移性質(zhì)可知 四邊形ABDE是平行四邊形 ∴AE=BD,AE∥BD ∴AE=DC,AE∥DC

四邊形ADCE是平行四邊形 ∵AD⊥BC ∴四邊形ADCE是矩形

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,l1反映了某公司的銷售收入與銷售量的關(guān)系,l2反映了該公司產(chǎn)品的銷售成本與銷售量的關(guān)系,當該公司盈利(收入大于成本)時,銷售量( 。
A.小于3t
B.大于3t
C.小于4t
D.大于4t

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店銷售A,B兩種商品,已知銷售一件A種商品可獲利潤10元,銷售一件B種商品可獲利潤15元.
(1)該商店銷售A,B兩種商品共100件,獲利潤1350元,則A,B兩種商品各銷售多少件?
(2)根據(jù)市場需求,該商店準備購進A,B兩種商品共200件,其中B種商品的件數(shù)不多于A種商品件數(shù)的3倍.為了獲得最大利潤,應(yīng)購進A,B兩種商品各多少件?可獲得最大利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程或方程組解應(yīng)用題:
近年來,我國逐步完善養(yǎng)老金保險制度.甲、乙兩人計劃用相同的年數(shù)分別繳納養(yǎng)老保險金15萬元和10萬元,甲計劃比乙每年多繳納養(yǎng)老保險金0.2萬元.求甲、乙兩人計劃每年分別繳納養(yǎng)老保險金多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,F(xiàn)O⊥AB,垂足為點O,連接AF并延長交⊙O于點D,連接OD交BC于點E,∠B=30°,F(xiàn)O=2

(1)求AC的長度;

(2)求圖中陰影部分的面積.(計算結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明家與學校在同一直線上且相距720m,一天早上他和弟弟都勻速步行去上學,弟弟走得慢,先走1分鐘后,小明才出發(fā),已知小明的速度是80m/分,以小明出發(fā)開始計時,設(shè)時間為x(分),兄弟兩人之間的距離為ym,圖中的折線是y與x的函數(shù)關(guān)系的部分圖象,根據(jù)圖象解決下列問題:

(1)弟弟步行的速度是m/分,點B的坐標是
(2)線段AB所表示的y與x的函數(shù)關(guān)系式是
(3)試在圖中補全點B以后的圖象.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】整式A與m2+2mn+n2的和是(m﹣n)2 , 則A=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個多邊形的每個外角都為30°,則這個多邊形是( 。

A. 十二邊形 B. 十邊形 C. 八邊形 D. 六邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果(x+1)(2x+m)的乘積中不含x的一次項,則m的值為( 。
A.2
B.﹣2
C.0.5
D.﹣0.5

查看答案和解析>>

同步練習冊答案