【題目】釣魚島及周邊島嶼自古以來就是中國的領(lǐng)土.如圖,我海監(jiān)飛機(jī)在距海平面高度為2千米的C處測得釣魚島南北兩端A,B的俯角∠DCA=45°、∠DCB=30°(己知A,B,C三點(diǎn)在同一平面上),求釣魚島南北兩端A,B的距離.(參考數(shù)據(jù): =1.73)
【答案】解:作CM⊥AB于M,如圖所示:
根據(jù)題意得:∠CAM=∠DCA=45°,∠CBM=∠DCB=30°,CM=2千米,
則AM=CM=2千米,BM= CM=2 千米,
則AB=BM﹣AM=(2 ﹣2)千米≈1.46千米;
答:釣魚島南北兩端A、B的距離約為1.46千米.
【解析】作CM⊥AB于M,根據(jù)題意得出∠CAM=∠DCA=45°,∠CBM=∠DCB=30°,CM=2千米,得出AM=CM=2千米,再求出BM的值,即可得出求釣魚島南北兩端A,B的距離.
【考點(diǎn)精析】本題主要考查了關(guān)于仰角俯角問題的相關(guān)知識點(diǎn),需要掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了更好地保護(hù)環(huán)境,某市污水處理廠決定先購買A,B兩型污水處理設(shè)備共20臺,對周邊污水進(jìn)行處理,每臺A型污水處理設(shè)備12萬元,每臺B型污水處理設(shè)備10萬元.已知2臺A型污水處理設(shè)備和1臺B型污水處理設(shè)備每周可以處理污水680噸,4臺A型污水處理設(shè)備和3臺B型污水處理設(shè)備每周可以處理污水1560噸.
(1)求A、B兩型污水處理設(shè)備每周每臺分別可以處理污水多少噸?
(2)經(jīng)預(yù)算,市污水處理廠購買設(shè)備的資金不超過230萬元,每周處理污水的量不低于4500噸,請你列舉出所有購買方案.
(3)如果你是廠長,從節(jié)約資金的角度來談?wù)勀銜x擇哪種方案并說明理由?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為學(xué)生開展拓展性課程,擬在一塊長比寬多6米的長方形場地內(nèi)建造由兩個大棚組成的植物養(yǎng)殖區(qū)(如圖1),要求兩個大棚之間有間隔4米的路,設(shè)計方案如圖2,已知每個大棚的周長為44米.
(1)求每個大棚的長和寬各是多少?
(2)現(xiàn)有兩種大棚造價的方案,方案一是每平方米60元,超過100平方米優(yōu)惠500元,方案二是每平方米70元,超過100平方米優(yōu)惠總價的20%,試問選擇哪種方案更優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小凡與小光從學(xué)校出發(fā)到距學(xué)校5千米的圖書館看書,途中小凡從路邊超市買了一些學(xué)習(xí)用品,如圖反應(yīng)了他們倆人離開學(xué)校的路程(千米)與時間(分鐘)的關(guān)系,請根據(jù)圖象提供的信息回答問題:
(1)和中,__________描述小凡的運(yùn)過程.
(2)___________誰先出發(fā),先出發(fā)了___________分鐘.
(3)___________先到達(dá)圖書館,先到了____________分鐘.
(4)當(dāng)_________分鐘時,小凡與小光在去學(xué)校的路上相遇.
(5)小凡與小光從學(xué)校到圖書館的平均速度各是多少千米/小時?(不包括中間停留的時間)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,,AC和BD相交于點(diǎn)O,E是CD上一點(diǎn),F是OD上一點(diǎn),且∠1=∠A.
(1)求證:;
(2)若∠BFE=110°,∠A=60°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把邊長為a的一塊正方形紙板的四角,各剪去一個邊長為b的小正方形.
(1)求該紙板剩余部分(陰影部分)的面積;(用含a、b的代數(shù)式表示)
(2)當(dāng)a=35cm,b=2.5cm時,請計算出剩余部分的面積;
(3)若將剩余的紙板按中間的虛線折成一個無蓋的紙盒,求紙盒的容積;(用含a、b的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,交AC于D,DE⊥AB于E,EF∥BC交AC于F.
(1)求證:△EDF∽△ADE;
(2)猜想:線段DC,DF、DA之間存在什么關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以點(diǎn)A為頂點(diǎn)作兩個等腰直角三角形(△ABC,△ADE),如圖1所示放置,使得一直角邊重合,連接BD,CE.
(1)說明BD=CE;
(2)延長BD,交CE于點(diǎn)F,求∠BFC的度數(shù);
(3)若如圖2放置,上面的結(jié)論還成立嗎?請簡單說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖有一圓錐形糧堆,其主視圖是邊長為6m的正三形ABC。
(1)求該圓錐形糧堆的側(cè)面積。
(2)母線AC的中點(diǎn)P處有一老鼠正在偷吃糧食,小貓從B處沿圓錐表面去偷襲老鼠,求小貓經(jīng)過的最短路程。(結(jié)果不取近似數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com