【題目】如圖,在平面直角坐標系中,拋物線與軸的兩個交點分別為,,與軸相交于點.
(1)求拋物線的表達式;
(2)聯(lián)結(jié)、,求的正切值;
(3)點在拋物線上,且,求點的坐標.
【答案】(1);(2)2;(3)點坐標為或
【解析】
(1)根據(jù)待定系數(shù)法將,代入中,列出含b,c的方程組,求解b,c即可確定拋物線的表達式;
(2)作AD⊥BC于D,用等面積法求AD長,再用勾股定理求CD長,利用正切函數(shù)定義求解;
(3)根據(jù)題意可知P點應(yīng)滿足的條件為tan∠ACB=2,用P點的坐標表示線段長,根據(jù)正切函數(shù)定義列式求解.
解:(1)將,代入中得,
,
解得, ,
∴拋物線的表達式為.
(2)如圖,過點A作AD⊥BC垂足為D,
∵,,,
∴AB=4,OC=3,BC= ,AC=
∵ ,
∴,
∴AD= ,
由勾股定理得,CD=,
∴tan∠ACB= ,
即tan∠ACB=2.
(3)如圖,設(shè)P在拋物線上,P(x,-x2+2x+3),過P作PE⊥x軸,垂足為E,
∵,
∴tan∠PAB= ,
∴或
解得,x= -1(舍去)或x=1,x= -1(舍去)或x=5
當x= -1時,y=4;當x=5時,y= -12
∴P點坐標為(1,4)或(5,-12).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,BC=8cm,射線AG∥BC,點E從點A出發(fā)沿射線AG以1cm/s的速度運動,同時點F從點B出發(fā)沿射線BC以2cm/s的速度運動,設(shè)運動時間為t(s).
(1)連接EF,當EF經(jīng)過AC邊的中點D時,求證:△ADE≌△CDF;
(2)①當t為 時,以A、F、C、E為頂點的四邊形是平行四邊形(直接寫出結(jié)果);
②當t為 時,四邊形ACFE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),以下結(jié)論:①2a+b>0;②a+c<0;③4a+2b+c>0;④b2﹣5a2>2ac.其中正確的是( )
A. ①②B. ③④C. ②③④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于拋物線,下列說法錯誤的是( )
A.若頂點在x軸下方,則一元二次方程有兩個不相等的實數(shù)根
B.若拋物線經(jīng)過原點,則一元二次方程必有一根為0
C.若,則拋物線的對稱軸必在y軸的左側(cè)
D.若,則一元二次方程,必有一根為-2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=a(x﹣m)2+2m(m≠0)經(jīng)過原點,其頂點為P,與x軸的另一交點為A.
(1)P點坐標為 ,A點坐標為 ;(用含m的代數(shù)式表示)
(2)求出a,m之間的關(guān)系式;
(3)當m>0時,若拋物線y=a(x﹣m)2+2m向下平移m個單位長度后經(jīng)過點(1,1),求此拋物線的表達式;
(4)若拋物線y=a(x﹣m)2+2m向下平移|m|個單位長度后與x軸所截的線段長,與平移前相比有什么變化?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】開學(xué)初期,天氣炎熱,水杯需求量大.雙福育才中學(xué)門口某超市購進一批水杯,其中A種水杯進價為每個15元,售價為每個25元;B種水杯進價為每個12元,售價為每個20元
(1)該超市平均每天可售出60個A種水杯,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),A種水杯單價每降低1元,則平均每天的銷量可增加10個.為了盡量讓學(xué)生得到更多的優(yōu)惠,某天該超市將A種水杯售價調(diào)整為每個m元,結(jié)果當天銷售A種水杯獲利630元,求m的值.
(2)該超市準備花費不超過1600元的資金,購進A、B兩種水杯共120個,其中B種水杯的數(shù)量不多于A種水杯數(shù)量的兩倍.請為該超市設(shè)計獲利最大的進貨方案,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E為AD的中點,延長CE交BA的延長線于點F.
(1)求證:AB=AF;
(2)若BC=2AB,∠BCD=100°,求∠ABE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結(jié)論:①abc>0;②2a+b=0;③若m為任意實數(shù),則a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2.其中,正確結(jié)論的個數(shù)為( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,以直線為對稱軸的拋物線與直線交于,兩點,與軸交于,直線與軸交于點.
(1)求拋物線的函數(shù)表達式;
(2)設(shè)直線與拋物線的對稱軸的交點為,是拋物線上位于對稱軸右側(cè)的一點,若,且與的面積相等,求點的坐標;
(3)若在軸上有且只有一點,使,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com