【題目】我市某中學在創(chuàng)建“特色校園”的活動中,將本校的辦學理念做成宣傳牌AB,放置在教學樓的頂部(如圖所示)。小明在操場上的點D處,用1m高的測角儀CD,從點C測得宣傳牌的底部B的仰角為37,然后向教學樓正方向走了4米到達點F處,又從點E測得宣傳牌頂部A仰角為45.已知教學樓高BM=17米,且點A、B、M在同一直線上,求宣傳牌AB高度(結果精確到0.1米。參考數(shù)據(jù):,sin37≈0.60,cos37≈0.81,tan37≈0.75).
【答案】解:過點C作CN⊥AM于點N,則點C,E,N在同一直線上,
設AB=x米,則AN=x+(17﹣1)=x+16(米),-
在Rt△AEN中,∠AEN=45°,∴EN=AN=x+16。
在Rt△BCN中,∠BCN=37°,BM=17,
∴。∴,解得:x≈1.3。
經(jīng)檢驗:x≈1.3是原分式方程的解。
答:宣傳牌AB的高度約為1.3米。
【解析】試題分析:首先過點C作CN⊥AM于點N,則點C,E,N在同一直線上,設AB=x米,則AN=x+(17﹣1)=x+16(米),則在Rt△AEN中,∠AEN=45°,可得EN=AN=x+16,在Rt△BCN中,∠BCN=37°,BM=17,可得,則可得方程:,解此方程即可求得答案。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把一個矩形紙片OABC放入平面直角坐標系中,使OA、OC分別落在x軸、y軸上,連接OB,將紙片OABC沿OB折疊,使點A落在A′的位置上.若OB= , ,求點A′的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,點P為AD延長線上一點,連接AC、CP,過點C作CF⊥CP于點C,交AB于點F,過點B作BM⊥CF于點N,交AC于點M.
(1)若, ,求;
(2)若,求證: ;
(3)如圖2,在其他條件不變的情況下,將“正方形ABCD”改為“矩形ABCD”,且 AB≠BC,AC=AP,取CP中點E,連接EB,交AC于點O,猜想:∠AOB與∠ABM之間有何數(shù)量關系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若以A(-0.5,0)、B(2,0)、C(0,1)三點為頂點要畫平行四邊形,則第四個頂點不可能在( 。
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一只不透明的袋子中有2個紅球、3個綠球和5個白球,這些球除顏色外都相同,將球攪勻,從中任意摸出1個球.
(1)會出現(xiàn)哪些可能的結果? ;
(2)你認為摸到哪種顏色球的可能性最大? ;
(3)怎樣改變袋子中紅球和白球的個數(shù),使摸到這兩種顏色球的概率相同?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】人體內(nèi)有一種細胞的直徑約為0.00000156米,將數(shù)0.00000156用科學記數(shù)法為( 。
A.1.56×10﹣5B.1.56×10﹣6C.1.56×10﹣7D.15.6×10﹣6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠A=100°,BI、CI分別平分∠ABC,∠ACB,則∠BIC=________,若BM、CM分別平分∠ABC,∠ACB的外角平分線,則∠M=__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com