如圖,在3×3的網(wǎng)格中,每個網(wǎng)格線的交點(diǎn)稱為格點(diǎn).已知圖中A、B兩個格點(diǎn),請?jiān)趫D中再尋找另一個格點(diǎn)C,使△ABC成為等腰三角形,則滿足條件的點(diǎn)C有( )

A.4個
B.6個
C.8個
D.10個
【答案】分析:分AB是腰長時,根據(jù)網(wǎng)格結(jié)構(gòu),找出一個小正方形與A、B頂點(diǎn)相對的頂點(diǎn),連接即可得到等腰三角形,AB是底邊時,根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等,AB垂直平分線上的格點(diǎn)都可以作為點(diǎn)C,然后相加即可得解.
解答:解:如圖,AB是腰長時,紅色的4個點(diǎn)可以作為點(diǎn)C,
AB是底邊時,黑色的4個點(diǎn)都可以作為點(diǎn)C,
所以,滿足條件的點(diǎn)C的個數(shù)是4+4=8.
故選C.
點(diǎn)評:本題考查了等腰三角形的判定,熟練掌握網(wǎng)格結(jié)構(gòu)的特點(diǎn)是解題的關(guān)鍵,要注意分AB是腰長與底邊兩種情況討論求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013年浙江省湖州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,在10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點(diǎn)稱為格點(diǎn).若拋物線經(jīng)過圖中的三個格點(diǎn),則以這三個格點(diǎn)為頂點(diǎn)的三角形稱為拋物線的“內(nèi)接格點(diǎn)三角形”.以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,若拋物線與網(wǎng)格對角線OB的兩個交點(diǎn)之間的距離為,且這兩個交點(diǎn)與拋物線的頂點(diǎn)是拋物線的內(nèi)接格點(diǎn)三角形的三個頂點(diǎn),則滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是( )
A.16
B.15
C.14
D.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年遼寧省沈陽市和平區(qū)中考數(shù)學(xué)監(jiān)測卷(二)(解析版) 題型:解答題

如圖,在10×10的正方形網(wǎng)格中△ABC與△DEF的頂點(diǎn),都在邊長為1 的小正方形頂點(diǎn)上,且點(diǎn)A與原點(diǎn)重合.
(1)畫出△ABC關(guān)于點(diǎn)B為對稱中心的中心對稱圖形△A′BC′,畫出將△DEF向右平移6個單位且向上平移2個單位的△D′E′F′;
(2)求經(jīng)過A、B、C三點(diǎn)的二次函數(shù)關(guān)系式,并求出頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年北京市朝陽區(qū)九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

已知:如圖,在2×2的網(wǎng)格中,每個小正方形的邊長都是1,圖中的陰影部分圖案是由一個點(diǎn)為圓心,半徑分別為1和2的圓弧圍成,則陰影部分的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年4月中考數(shù)學(xué)模擬試卷(37)(解析版) 題型:解答題

已知:如圖,在8×12的矩形網(wǎng)格中,每個小正方形的邊長都為1,四邊形ABCD的頂點(diǎn)都在格點(diǎn)上.
(1)在所給網(wǎng)格中按下列要求畫圖:
①在網(wǎng)格中建立平面直角坐標(biāo)系(坐標(biāo)原點(diǎn)為O),使四邊形ABCD各個頂點(diǎn)的坐標(biāo)分別為A(-5,0)、B(-4,0)、C(-1,3)、D(-5,1);
②將四邊形ABCD沿坐標(biāo)橫軸翻折180°,得到四邊形A′B′C′D′,再把四邊形A′B′C′D′繞原點(diǎn)O旋轉(zhuǎn)180°,得到四邊形A″B″C″D″;
(2)寫出點(diǎn)C″、D″的坐標(biāo);
(3)請判斷四邊形A″B″C″D″與四邊形ABCD成何種對稱?若成中心對稱,請寫出對稱中心;若成軸對稱,請寫出對稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年福建省龍巖市連城一中自主招生考試數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,在4×4方格中作以AB為一邊的Rt△ABC,要求點(diǎn)在格點(diǎn)上,這樣的Rt△能作出    個.

查看答案和解析>>

同步練習(xí)冊答案