【題目】我市紅領(lǐng)服飾有限公司生產(chǎn)了一款夏季服裝,通過實驗商店和網(wǎng)上商店兩種途徑進(jìn)行銷售,銷售一段時間后,該公司對這種商品的銷售情況,進(jìn)行了為期30天的跟蹤調(diào)查,其中實體商店的日銷售量y1(百件)與時間t(t為整數(shù),單位:天)的部分對應(yīng)值如表所示:

時間t(天)

0

5

10

15

20

25

30

日銷售量yt(百件)

0

25

40

45

40

25

0

(1)請你在一次函數(shù)、二次函數(shù)和反比例函數(shù)中,選擇合適的函數(shù)能反映y1t的變化規(guī)律,并求出y1t的函數(shù)關(guān)系式及自變量t的取值范圍;

(2)網(wǎng)上商店的日銷售量y2(百件)與時間t(t為整數(shù),單位:天)的關(guān)系如圖所示.求y2t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;

(3)在跟蹤調(diào)查的30天中,設(shè)實體商店和網(wǎng)上商店的日銷售總量為y(百件),求yt的函數(shù)關(guān)系式;當(dāng)t為何值時,日銷售總量y達(dá)到最大,并求出此時的最大值.

【答案】(1)y1與t的函數(shù)關(guān)系式為:y1=﹣t2+6t(0≤t≤30,且為整數(shù));(2)y2=;(3)當(dāng)t=20時,y最大=100(百件).

【解析】

(1)根據(jù)觀察可設(shè)y1=at2+bt+c,將(0,0),(5,25),(10,40)代入即可得到結(jié)論;(2)當(dāng)0≤t≤10時,設(shè)y2=kt,求得y2t的函數(shù)關(guān)系式為:y2=4t,當(dāng)10≤t≤30時,設(shè)y2=mt+n,將(10,40),(30,60)代入得到y2t的函數(shù)關(guān)系式為:y2=k+30,(3)依題意得y=y1+y2,當(dāng)0≤t≤10時,得到y最大=80;當(dāng)10<t≤30時,得到y最大=100,得到結(jié)論.

1)根據(jù)觀察設(shè)y1=at2+bt+c,將(0,0),(5,25),(10,40)代入得: ,

解得

y1t的函數(shù)關(guān)系式為:y1=﹣t2+6t(0≤t≤30,且為整數(shù));

(2)當(dāng)0≤t≤10時,設(shè)y2=kt,

(10,40)在其圖象上,

10k=40,

k=4,

y2t的函數(shù)關(guān)系式為:y2=4t,

當(dāng)10≤t≤30時,設(shè)y2=mt+n,

將(10,40),(30,60)代入得 ,

解得 ,

y2t的函數(shù)關(guān)系式為:y2=2t+20,

綜上所述,y2= ;

(3)依題意得y=y1+y2,當(dāng)0≤t≤10時,y=﹣t2+6t+4t=﹣t2+10t=﹣(t﹣25)2+125,

t=10時,y最大=80;

當(dāng)10<t≤30時,y=﹣t2+6t+2t+20=﹣t2+8t+20=﹣(t﹣20)2+100,

t=20時,y最大=100,

100>80,

∴當(dāng)t=20時,y最大=100(百件).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A點的坐標(biāo)為(a,6),ABx軸于點B,cosOAB═,反比例函數(shù)y=的圖象的一支分別交AO、AB于點C、D.延長AO交反比例函數(shù)的圖象的另一支于點E.已知點D的縱坐標(biāo)為

(1)求反比例函數(shù)的解析式;

(2)求直線EB的解析式;

(3)求SOEB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知∠C90°,AC60cmAB100cm,a、b、c…是在△ABC內(nèi)部的矩形,它們的一個頂點在AB上,一組對邊分別在AC上或與AC平行,另一組對邊分別在BC上或與BC平行.若各矩形在AC上的邊長相等,矩形a的一邊長是72cm,則這樣的矩形a、bc…的個數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將平行四邊形ABCD繞點D旋轉(zhuǎn),點C落在BC上的點H處,點B恰好落在點A處,得平行四邊形DHAE,若BH=2,CH=3,則DC=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,點By軸上,OA=1.將菱形OABC沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2017次,點B的落點依次為B1B2,B3,,則B2017的坐標(biāo)為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD在平面直角坐標(biāo)系中,AD6,若OA、OB的長是關(guān)于x的一元二次方程x27x+120的兩個根,且OAOB

1)求的值.

2)若Ex軸上的點,且SAOE,求經(jīng)過D、E兩點的直線的解析式,并判斷△AOE與△DAO是否相似?

3)若點M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點F,使以A、CF、M為頂點的四邊形為菱形?若存在,請直接寫出F點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某商品的進(jìn)價為每件40元.現(xiàn)在的售價是每件60元.每星期可賣出300件.市場調(diào)查反映:如調(diào)整價格,每漲價一元.每星期要少賣出10件;每降價一元,每星期可多賣出18件.如何定價才能使利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點 是以 為直徑的 上一點, 于點 ,過點 的切線,與 的延長線相交于點 , 的中點,連接 并延長與 相交于點 ,延長 的延長線相交于點 ,且

(1)求證:BF=EF;

(2);

(3)的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于給定的兩個函數(shù),任取自變量x的一個值,當(dāng)x1時,它們對應(yīng)的函數(shù)值互為相反數(shù):當(dāng)x1時,它們對應(yīng)的函數(shù)值相等,我們稱這樣的兩個函數(shù)互為相關(guān)函數(shù),例如:一次函數(shù)yx4,它的相關(guān)函數(shù)為

1)一次函數(shù)y=﹣x+5的相關(guān)函數(shù)為   

2)已知點Ab1,4),點B坐標(biāo)(b+3,4),函數(shù)y3x2的相關(guān)函數(shù)與線段AB有且只有一個交點,求b的取值范圍;

3)當(dāng)b+1xb+2時,函數(shù)y=﹣3x+b2的相關(guān)函數(shù)的最小值為﹣3,求b的值.

查看答案和解析>>

同步練習(xí)冊答案