【題目】已知:在菱形ABCD中,O是對(duì)角線BD上的一動(dòng)點(diǎn).
(1)如圖甲,P為線段BC上一點(diǎn),連接PO并延長(zhǎng)交AD于點(diǎn)Q,當(dāng)O是BD的中點(diǎn)時(shí),求證:;
(2)如圖乙,連接AO并延長(zhǎng),與DC交于點(diǎn)R,與BC的延長(zhǎng)線交于點(diǎn)若,,,求AS和OR的長(zhǎng).
【答案】(1)見(jiàn)解析;(2),.
【解析】
(1)根據(jù)菱形的性質(zhì)證明△ODQ≌△OBP,即可得到.
(2)首先求AS的長(zhǎng),要通過(guò)構(gòu)建直角三角形求解;過(guò)A作BC的垂線,設(shè)垂足為T,在Rt△ABT中,易證得∠ABT=∠DCB=60°,又已知了斜邊AB的長(zhǎng),通過(guò)解直角三角形可求出AT、BT的長(zhǎng);進(jìn)而可在Rt△ATS中,由勾股定理求出斜邊AS的值;由于四邊形ABCD是菱形,則AD∥BC,易證得△ADO∽△SBO,已知了AD、BS的長(zhǎng),根據(jù)相似三角形的對(duì)應(yīng)邊成比例線段可得出OA、OS的比例關(guān)系式,即可求出OA、OS的長(zhǎng);同理,可通過(guò)相似三角形△ADR和△SCR求得AR、RS的值;由OR=OS-RS即可求出OR的長(zhǎng).
(1)證明:四邊形ABCD為菱形,
.
,
是BD的中點(diǎn),
,
在和中,
,,
≌
.
(2)解:如圖乙,
過(guò)A作,與CB的延長(zhǎng)線交于T.
是菱形,
,
在中,
,
,
,
在中,
.
,
∽.
,
則,
,
,
.
同理可得∽.
,
則,
,
.
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△A'B'C,M是BC的中點(diǎn),N是A'B'的中點(diǎn),連接MN,若BC=4,∠ABC=60°,則線段MN的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花圃銷(xiāo)售一批名貴花卉,平均每天可售出20盆,每盆盈利40元,為了增加盈利并盡快減少庫(kù)存,花圃決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每盆花卉每降1元,花圃平均每天可多售出2盆.
(1)若花圃平均每天要盈利1200元,每盆花卉應(yīng)降價(jià)多少元?
(2)每盆花卉降低多少元時(shí),花圃平均每天盈利最多,是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在環(huán)境創(chuàng)優(yōu)活動(dòng)中,某居民小區(qū)要在一塊靠墻(墻長(zhǎng)25米)的空地上修建一個(gè)矩形養(yǎng)雞場(chǎng),養(yǎng)雞場(chǎng)的一邊靠墻,如果用60m長(zhǎng)的籬笆圍成中間有一道籬笆的養(yǎng)雞場(chǎng),設(shè)養(yǎng)雞場(chǎng)平行于墻的一邊BC的長(zhǎng)為x(m),養(yǎng)雞場(chǎng)的面積為y(m2)
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)養(yǎng)雞場(chǎng)的面積能達(dá)到300m2嗎?若能,求出此時(shí)x的值,若不能,說(shuō)明理由;
(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當(dāng)x取何值時(shí),養(yǎng)雞場(chǎng)的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD,AD=4,CD=10,P是AB上一動(dòng)點(diǎn),M、N、E分別是PD、PC、CD的中點(diǎn).
(1)求證:四邊形PMEN是平行四邊形;
(2)請(qǐng)直接寫(xiě)出當(dāng)AP為何值時(shí),四邊形PMEN是菱形;
(3)四邊形PMEN有可能是矩形嗎?若有可能,求出AP的長(zhǎng);若不可能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B、C是線段AD上的點(diǎn),△ABE、△BCF、△CDG都是等邊三角形,且AB=4,BC=6,已知△ABE與△CDG的相似比為2:5.則
①CD=____;
②圖中陰影部分面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過(guò)點(diǎn)B作⊙O的切線BD,與CA的延長(zhǎng)線交于點(diǎn)D,與半徑AO的延長(zhǎng)線交于點(diǎn)E,過(guò)點(diǎn)A作⊙O的切線AF,與直徑BC的延長(zhǎng)線交于點(diǎn)F.
(1)求證:△ACF∽△DAE;
(2)若S△AOC=,求DE的長(zhǎng);
(3)連接EF,求證:EF是⊙O的切線.
【答案】(1) 見(jiàn)解析; (2)3 ;(3)見(jiàn)解析.
【解析】試題分析:(1)根據(jù)圓周角定理得到∠BAC=90°,根據(jù)三角形的內(nèi)角和得到∠ACB=60°根據(jù)切線的性質(zhì)得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到結(jié)論;
(2)根據(jù)S△AOC=,得到S△ACF=,通過(guò)△ACF∽△DAE,求得S△DAE=,過(guò)A作AH⊥DE于H,解直角三角形得到AH=DH=DE,由三角形的面積公式列方程即可得到結(jié)論;
(3)根據(jù)全等三角形的性質(zhì)得到OE=OF,根據(jù)等腰三角形的性質(zhì)得到∠OFG=(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,過(guò)O作OG⊥EF于G,根據(jù)全等三角形的性質(zhì)得到OG=OA,即可得到結(jié)論.
試題解析:(1)證明:∵BC是⊙O的直徑,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°
∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切線,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切線,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;
(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵S△AOC=,∴S△ACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴S△DAE=,過(guò)A作AH⊥DE于H,∴AH=DH=DE,∴S△ADE=DEAH=×=,∴DE=;
(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFO,在△AOF與△BOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,過(guò)O作OG⊥EF于G,∴∠OAF=∠OGF=90°,在△AOF與△OGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切線.
【題型】解答題
【結(jié)束】
25
【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),四邊形ABCO是矩形,點(diǎn)A,C的坐標(biāo)分別是A(0,2)和C(2,0),點(diǎn)D是對(duì)角線AC上一動(dòng)點(diǎn)(不與A,C重合),連結(jié)BD,作DE⊥DB,交x軸于點(diǎn)E,以線段DE,DB為鄰邊作矩形BDEF.
(1)填空:點(diǎn)B的坐標(biāo)為 ;
(2)是否存在這樣的點(diǎn)D,使得△DEC是等腰三角形?若存在,請(qǐng)求出AD的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由;
(3)①求證:;
②設(shè)AD=x,矩形BDEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(可利用①的結(jié)論),并求出y的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b與二次函數(shù)y2=ax2的圖象交于A(﹣1,n),B(2,4)兩點(diǎn).
(1)利用圖中條件,求兩個(gè)函數(shù)的解析式;
(2)根據(jù)圖象直接寫(xiě)出使y1<y2的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解本學(xué)期初三期中調(diào)研測(cè)試數(shù)學(xué)試題的命題質(zhì)量與難度系數(shù),命題教師選取了一個(gè)水平相當(dāng)?shù)某跞昙?jí)進(jìn)行分析研究,隨機(jī)抽取部分學(xué)生成績(jī)(得分為整數(shù),滿分為130分)分為5組:第一組55~70,第二組70~85,第三組85~100,第四組100~115,第五組115~130;統(tǒng)計(jì)后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計(jì)圖,觀察圖形的信息,回答下列問(wèn)題:
(1)本次調(diào)查共隨機(jī)抽取了該年級(jí)多少名學(xué)生?并將頻數(shù)分布直方圖補(bǔ)充完整;
(2)若將得分轉(zhuǎn)化為等級(jí),規(guī)定:得分低于70分評(píng)為“D”,70~100分評(píng)為“C”,100~115分評(píng)為“B”,115~130分評(píng)為“A”,那么該年級(jí)1500名考生中,考試成績(jī)?cè)u(píng)為“B”的學(xué)生大約有多少名?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com