精英家教網(wǎng)如圖,正五邊形ABCDE中,若對(duì)角線AC=6,則正五邊形的邊長(zhǎng)為( 。
A、-3+3
5
B、-4+4
5
C、-5+5
5
D、-6+6
5
分析:連接AD,根據(jù)正五邊形的特點(diǎn)求出△ABC≌△AED,△ACD為等腰三角形,作∠ACD的平分線,交AD于F;根據(jù)△ACD與△CDF各角的度數(shù)可求出△FCD∽△CAD,根據(jù)其對(duì)應(yīng)邊成比例即可解答.
解答:精英家教網(wǎng)解:
連接AD;
∵五邊形ABCDE是正五邊形,
∴∠ABC=∠BAE=
3×180°
5
=108°,AB=BC,
∴∠BAC=∠ACB=
180°-108°
2
=36°,
同理可知,∠AED=108°,AB=BC=AE=DE,
∴△ABC≌△AED,AC=AD;
∵∠BAC=∠DAE=36°,∠BAE=108°,
∴∠CAD=108°-36°-36°=36°,
∴∠ACD=∠ADC=72°;
作∠ACD的平分線,交AD于F,根據(jù)題意,∠CAD=36°,∠ACD=∠ADC=72°;
∴∠ACF=∠FCD=36°,AF=CF=CD,
∴△FCD∽△CAD,
∴設(shè)CD=x,則
CD
AC
=
FD
CD
,即
x
6
=
6-x
x
,
∴x=-3+3
5
點(diǎn)評(píng):此題比較復(fù)雜,解答此題的關(guān)鍵是熟知正五邊形的特點(diǎn),及全等、相似三角形的判定定理及性質(zhì),作出輔助線,構(gòu)造出相應(yīng)的三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、問(wèn)題背景:某課外學(xué)習(xí)小組在一次學(xué)習(xí)研討中,得到了如下兩個(gè)命題:
Ⅰ.如圖①,在正三角形△ABC中,M、N分別是AC、AB上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=60°,則BM=CN.
Ⅱ.如圖②,在正方形ABCD中,M、N分別是CD、AD上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=90°,則BM=CN.
任務(wù)要求:
(1)請(qǐng)你從Ⅰ、Ⅱ兩個(gè)命題中選擇一個(gè)進(jìn)行證明.
(2)如圖,在正五邊形ABCDE中,M、N分別是CD、DE上的點(diǎn),BM與CN相交于點(diǎn)O,若∠BON=108°,請(qǐng)問(wèn)結(jié)論BM=CN是否還成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

O是邊長(zhǎng)為a的正多邊形的中心,將一塊半徑足夠長(zhǎng),圓心角為α的扇形紙板的圓心放在O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).
(1)若正多邊形為正三角形,扇形的圓心角α=120°,請(qǐng)你通過(guò)觀察或測(cè)量,填空:
①如圖1,正三角形ABC的邊被扇形紙板覆蓋部分的總長(zhǎng)度為
 
;
②如圖2,正三角形ABC的邊被扇形紙板覆蓋部分的總長(zhǎng)度為
 
;
(2)若正多邊形為正方形,扇形的圓心角α=90°時(shí),①如圖3,正方形ABCD的邊被扇形紙板覆蓋部分的總長(zhǎng)度為
 
;
②如圖4,正方形ABCD的邊被扇形紙板覆蓋部分的總長(zhǎng)度為多少?并給予證明;
(3)若正多邊形為正五邊形,如圖5,當(dāng)扇形紙板的圓心角α為
 
時(shí),正五邊形的邊被扇形紙板覆蓋部分的總長(zhǎng)度仍為定值a.
(4)一般地,將一塊半徑足夠長(zhǎng)的扇形紙板的圓心放在邊長(zhǎng)為a的正n邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為
 
時(shí),正n邊形的邊被扇形紙板覆蓋部分的總長(zhǎng)度為定值a.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•邢臺(tái)二模)規(guī)律:
如圖1,直線m∥n,A、B為直線n上的點(diǎn),C、P為直線m上的點(diǎn).如果A、B、C為三個(gè)定點(diǎn),點(diǎn)P在m上移動(dòng),那么無(wú)論點(diǎn)P移動(dòng)到何位置,△ABP與△ABC的面積總相等,其理由是
同底等高的兩個(gè)三角形面積相等
同底等高的兩個(gè)三角形面積相等

應(yīng)用:
(1)如圖2,△ABC和△DCE都是等邊三角形,若△ABC的邊長(zhǎng)為1,則△BAE的面積是
3
4
3
4

(2)如圖3,四邊形ABCD和四邊形BEFG都是正方形,若正方形ABCD的邊長(zhǎng)為4,求△ACF的面積.
(3)如圖4,五邊形ABCDE和五邊形BFGHP都是正五邊形,若正五邊形ABCDE的邊長(zhǎng)為a,求△ACH的面積(結(jié)果不求近似值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,若五邊形ABCDE是⊙O的內(nèi)接正五邊形,則∠BOC=
72°
72°
,∠ABE=
36°
36°
,∠ADC=
72°
72°
,∠ABC=
108°
108°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年青海省初中畢業(yè)升學(xué)考試數(shù)學(xué)試題及答案 題型:059

請(qǐng)閱讀,完成證明和填空.

九年級(jí)數(shù)學(xué)興趣小組在學(xué)校的“數(shù)學(xué)長(zhǎng)廊”中興奮地展示了他們小組探究發(fā)現(xiàn)的結(jié)果,內(nèi)容如下:

(1)如圖,正三角形ABC中,在AB、AC邊上分別取點(diǎn)M、N,使BM=AN,連接BN、CM,發(fā)現(xiàn)BN=CM,且∠NOC=60°.

請(qǐng)證明:∠NOC=60°.

(2)如圖,正方形ABCD中,在AB、BC邊上分別取點(diǎn)M、N,使AM=BN,連接AN、DM,那么AN=________,且∠DON=________度.

(3)如圖,正五邊形ABCDE中,在AB、BC邊上分別取點(diǎn)M、N,使AM=BN,連接AN、EM,那么AN=________,且∠EON=________度.

(4)在正n邊形中,對(duì)相鄰的三邊實(shí)施同樣的操作過(guò)程,也會(huì)有類似的結(jié)論.

請(qǐng)大膽猜測(cè),用一句話概括你的發(fā)現(xiàn):________________

查看答案和解析>>

同步練習(xí)冊(cè)答案