21、如圖,AC是平行四邊形ABCD的對角線.
(1)請你用直尺和圓規(guī)作AC的垂直平分線,垂足為O,與邊AD,BC分別相交于點E,F(xiàn)(保留作圖痕跡,不要求寫作法和證明);
(2)求證:△AOE≌△COF.
分析:(1)以A、C為圓心,以大于$frac{1}{2}$AC的長為半徑畫弧,兩弧交于兩點,連接兩點即可;
(2)由(1)可得OA=OC,∠AOE=∠COF=90°,再由平行線的性質(zhì)可得∠AEO=∠CFO,根據(jù)AAS即可證明全等.
解答:解:(1)如圖.

(2)∵EF垂直平分AC,
∴OA=OC,∠AOE=∠COF=90°,
∵AD∥BC,
∴∠AEO=∠CFO,
∴△AOE≌△COF(AAS).
點評:此題主要考查了已知線段的垂直平分線的作法和三角形全等的判定.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

7、如圖,要使平行四邊行ABCD成為矩形,需添加的條件是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•畢節(jié)地區(qū))如圖①,有一張矩形紙片,將它沿對角線AC剪開,得到△ACD和△A′BC′.
(1)如圖②,將△ACD沿A′C′邊向上平移,使點A與點C′重合,連接A′D和BC,四邊形A′BCD是
平行四邊
平行四邊
形;
(2)如圖③,將△ACD的頂點A與A′點重合,然后繞點A沿逆時針方向旋轉(zhuǎn),使點D、A、B在同一直線上,則旋轉(zhuǎn)角為
90
90
度;連接CC′,四邊形CDBC′是
直角梯
直角梯
形;
(3)如圖④,將AC邊與A′C′邊重合,并使頂點B和D在AC邊的同一側(cè),設(shè)AB、CD相交于E,連接BD,四邊形ADBC是什么特殊四邊形?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

【解析】要證△ADF≌△CBE,因為AE=CF,則兩邊同時加上EF,得到AF=CE,又因為ABCD是平行四邊形,得出AD=CB,∠DAF=∠BCE,從而根據(jù)SAS推出兩三角形全等,由全等可得到∠DFA=∠BEC,所以得到DF∥EB

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆山東省東營濟軍生產(chǎn)基地實驗學校九年級上學期階段檢測數(shù)學卷(帶解析) 題型:解答題

已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

同步練習冊答案