如圖,實(shí)線(xiàn)部分為某月牙形公園的輪廓示意圖,它可看作是由⊙P上的一段優(yōu)弧和⊙Q上的一段劣弧圍成,⊙P與⊙Q的半徑都是2km,點(diǎn)P在⊙Q上.
(1)求月牙形公園的面積;
(2)現(xiàn)要在公園內(nèi)建一塊頂點(diǎn)都在⊙P上的直角三角形場(chǎng)地ABC,其中∠C=90°,求場(chǎng)地的最大面積.

【答案】分析:(1)連接DQ、EQ、PD、PE、PQ、DE,得出等邊三角形DPQ和等邊三角形DPQ,得出∠PQD=∠EQP=60°,根據(jù)相交兩圓的性質(zhì)得出DE⊥PQ,求出FQ和DF的值,求出DE,分別求出扇形DQE的面積和三角形DEQ的面積,即可求出弓形DPE的面積,根據(jù)圓的面積和弓形的面積求出答案即可;
(2)根據(jù)∠ACB=90°得出AB是圓的直徑,是2km,要使三角形ABC的面積最大得出只要高CN最大即可,得出CN的最大值是CP(P和N重合,CN最大),代入求出即可.
解答:解:(1)連接DQ、EQ、PD、PE、PQ、DE.

由已知PD=PQ=DQ,
∴△DPQ是等邊三角形.
∴∠DQP=60°.
同理∠EQP=60°.
∴∠DQE=120°,
∵⊙P和⊙Q交于D、E,
∴QP⊥DE,DF=EF,
∵△DPQ是等邊三角形,
∴∠QDE=30°,
∴FQ=DQ=1,
由勾股定理得:DF==EF,
即ED=2,
S弓形DPE=S扇形QDE-S△DQE
=-×2×1
=-
故月牙形公園的面積=4π-2(π-)=(π﹢2)km2
答:月牙形公園的面積為(π﹢2)km2

(2)∵∠C=90°,
∴AB是⊙P的直徑,
過(guò)點(diǎn)C作CN⊥AB于點(diǎn)N,S△ABC=CN•AB,
∵AB=4km,
∴S△ABC的面積取最大值就是CN長(zhǎng)度取最大值,即CN=CP=2km,
S△ABC的面積最大值等于4km2
故場(chǎng)地的最大面積為4km2
點(diǎn)評(píng):本題考查了等邊三角形的性質(zhì)和判定,圓周角定理,勾股定理,含30度角的直角三角形性質(zhì),扇形的面積,三角形的面積,相交兩圓的性質(zhì)等知識(shí)點(diǎn)的綜合運(yùn)用,主要考查學(xué)生運(yùn)用定理進(jìn)行推理和計(jì)算的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,實(shí)線(xiàn)部分是半徑為9m的兩條等弧組成的花圃,若每條弧所在的圓都經(jīng)過(guò)另一個(gè)圓的圓心,則花圃的周長(zhǎng)為
 
.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•營(yíng)口)如圖,實(shí)線(xiàn)部分為某月牙形公園的輪廓示意圖,它可看作是由⊙P上的一段優(yōu)弧和⊙Q上的一段劣弧圍成,⊙P與⊙Q的半徑都是2km,點(diǎn)P在⊙Q上.
(1)求月牙形公園的面積;
(2)現(xiàn)要在公園內(nèi)建一塊頂點(diǎn)都在⊙P上的直角三角形場(chǎng)地ABC,其中∠C=90°,求場(chǎng)地的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,實(shí)線(xiàn)部分是半徑為9m的兩條等弧組成的花圃,若每條弧所在的圓都經(jīng)過(guò)另一個(gè)圓的圓心,則花圃的周長(zhǎng)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,實(shí)線(xiàn)部分為某月牙形公園的輪廓示意圖,它可看作是由⊙P上的一段優(yōu)弧和⊙Q上的一段劣弧圍成,⊙P與⊙Q的半徑都是2km,點(diǎn)P在⊙Q上.
(1)求月牙形公園的面積;
(2)現(xiàn)要在公園內(nèi)建一塊頂點(diǎn)都在⊙P上的直角三角形場(chǎng)地ABC,其中∠C=90°,求場(chǎng)地的最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案