【題目】如圖,在平面直角坐標(biāo)系的第一象限中,有一點A(1,2),AB∥x軸且AB=6,點C在線段AB的垂直平分線上,且AC=5,將拋物線y=ax2(a>0)的對稱軸右側(cè)的圖象記作G.
(1)若G經(jīng)過C點,求拋物線的解析式;
(2)若G與△ABC有交點.
①求a的取值范圍;②當(dāng)0<y≤8時,雙曲線經(jīng)過G上一點,求k的最大值.
【答案】(1);(2)①,②k的最大值為112.
【解析】
(1)如圖1中,作CH⊥AB于H.求出點C坐標(biāo)即可解決問題;
(2)①當(dāng)拋物線經(jīng)過點A時,a=2,當(dāng)拋物線經(jīng)過點B時,2=49a,可得a=,由此即可解決問題;
②由題意當(dāng)a=時,y=x2,當(dāng)y=8時,8=x2,因為x>0,推出x=14,由題意當(dāng)反比例函數(shù)y=經(jīng)過點(14,8)時k的值最大;
解:(1)如圖1中,作CH⊥AB于H.
∵CA=CB=5,CH⊥AB,
∴AH=HB=3,
在Rt△ACH中,CH==4,
∴C(4,6),
∵拋物線y=ax2(a>0)經(jīng)過C點,
∴6=16a,
∴a=,
∴拋物線的解析式為y=x2.
(2)①∵A(1,2),B(7,2),
當(dāng)拋物線經(jīng)過點A時,a=2,
當(dāng)拋物線經(jīng)過點B時,2=49a,
∴a=,
∵若G與△ABC有交點,
∴≤a≤2.
②由題意當(dāng)a=時,y=x2,
當(dāng)y=8時,8=x2,
∴x>0,
∴x=14,
∴當(dāng)反比例函數(shù)y=經(jīng)過點(14,8)時k的值最大,此時k=112,
∴k的最大值為112.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】佳佳調(diào)査了七年級400名學(xué)生到校的方式,根據(jù)調(diào)查結(jié)果繪制出統(tǒng)計圖的一部分如圖:
(1)補全條形統(tǒng)計圖;
(2)求扇形統(tǒng)計圖中表示“步行”的扇形圓心角的度數(shù);
(3)估計在3000名學(xué)生中乘公交的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自從湖南與歐洲的“湘歐快線”開通后,我省與歐洲各國經(jīng)貿(mào)往來日益頻繁,某歐洲客商準(zhǔn)備在湖南采購一批特色商品,經(jīng)調(diào)查,用16 000元采購A型商品的件數(shù)是用7 500元采購B型商品的件數(shù)的2倍,一件A型商品的進價比一件B型商品的進價多10元.
(1)求一件A,B型商品的進價分別為多少元?
(2)若該歐洲客商購進A,B型商品共250件進行試銷,其中A型商品的件數(shù)不大于B型的件數(shù),且不小于80件,已知A型商品的售價為240元/件,B型商品的售價為220元/件,且全部售出.設(shè)購進A型商品m件,求該客商銷售這批商品的利潤v與m之間的函數(shù)解析式,并寫出m的取值范圍;
(3)在(2)的條件下,歐洲客商決定在試銷活動中每售出一件A型商品,就從一件A型商品的利潤中捐獻慈善資金a元,求該客商售完所有商品并捐獻慈善資金后獲得的最大收益.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點A(2,0),B(0,4),∠AOB的平分線交AB于C,一動點P從O點出發(fā),以每秒2個單位長度的速度,沿y軸向點B作勻速運動,過點P且平行于AB的直線交x軸于Q,作P、Q關(guān)于直線OC的對稱點M、N.設(shè)P運動的時間為t(0<t<2)秒.
(1)求C點的坐標(biāo),并直接寫出點M、N的坐標(biāo)(用含t的代數(shù)式表示);
(2)設(shè)△MNC與△OAB重疊部分的面積為S.
①試求S關(guān)于t的函數(shù)關(guān)系式;
②在圖2的直角坐標(biāo)系中,畫出S關(guān)于t的函數(shù)圖象,并回答:S是否有最大值?若有,寫出S的最大值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是對角線BD上一點,DE=4BE,連接CE,過點E作EF⊥CE交AB的延長線于點F,若AF=8,則正方形ABCD的邊長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一張長為8cm,寬為6cm的長方形紙片上,現(xiàn)要剪下一個腰長為5cm的等腰三角形(要求:等腰三角形的一個頂點與長方形的一個頂點重合,其余的兩個頂點在長方形的邊上).則剪下的等腰三角形的底邊長可以是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)k≠0,若函數(shù)y1=kx+3,y2=(x﹣k)2+k和y3=(x+k)2﹣k的圖象與y軸依次交于A,B和C三點,設(shè)函數(shù)y2,y3的圖象的頂點分別為D,E.
(1)當(dāng)k=1時,請在直角坐標(biāo)系中,分別畫出函數(shù)y1,y2,y3的草圖,并根據(jù)圖象,寫出你發(fā)現(xiàn)的兩條結(jié)論;
(2)BC長與k之間是正比例函數(shù)關(guān)系嗎?請作出判斷,并說明理由;
(3)若△ADE的面積等于9,求y2隨x的增大而減小時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是邊BC上一點,且BE:CE=1:3,DE交AC于點F,若DE=10,則CF等于( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校圖書館為了滿足同學(xué)們閱讀課外書的需求,計劃購進甲、乙兩種圖書共100套,其中甲種圖書每套120元,乙種圖書每套80元.設(shè)購買甲種圖書的數(shù)量套.
(1)按計劃用11000元購進甲、乙兩種圖書時,問購進這甲、乙兩種圖書各多少套?
(2)若購買甲種圖書的數(shù)量要不少于乙種圖書的數(shù)量的,購買兩種圖書的總費用為元,求出最少總費用.
(3)圖書館在不增加購買數(shù)量的情況下,增加購買丙種圖書,要求甲種圖書與丙種圖書的購買費用相同.丙種圖書每套100元,總費用比(2)中最少總費用多出1240元,請直接寫出購買方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com