如圖1,四邊形ABCD是正方形,G是CD邊上的一個動點(diǎn)(點(diǎn)G與C、D不重合),以CG為一邊在正方形ABCD外作正方形CEFG,連結(jié)BG,DE.我們探究下列圖中線段BG、線段DE的長度關(guān)系及所在直線的位置關(guān)系:

①想如圖1中線段BG、線段DE的長度關(guān)系及所在直線的位置關(guān)系;并證明你的結(jié)論。

②將圖1中的正方形CEFG繞著點(diǎn)C按順時(shí)針(或逆時(shí)針)方向旋轉(zhuǎn)任意角度,得到如圖2、如圖3情形.請你通過觀察、測量等方法判斷①中得到的結(jié)論是否仍然成立,并選取圖2證明你的判斷.

 

【答案】

①BG=DE,BG⊥DE,證明見解析②仍然成立,證明見解析

【解析】(1)BG=DE,BG⊥DE;

∵四邊形ABCD和四邊形CEFG是正方形,

∴BC=DC,CG=CE,∠BCD=∠ECG=90°,

∴∠BCG=∠DCE,

在△BCG和△DCE中,

 BC=DC∠BCG=∠DCE CG=CE,

∴△BCG≌△DCE(SAS),

∴BG=DE;

延長BG交DE于點(diǎn)H,

∵△BCG≌△DCE,

∴∠CBG=∠CDE,

又∠CBG+∠BGC=90°,

∴∠CDE+∠DGH=90°,

∴∠DHG=90°,

∴BH⊥DE,即BG⊥DE;

(2)BG=DE,BG⊥DE仍然成立,

在圖(2)中證明如下

∵四邊形ABCD、四邊形CEFG都是正方形

∴BC=CD,CG=CE,∠BCD=∠ECG=90°

∴∠BCG=∠DCE,

∴△BCG≌△DCE(SAS)

∴BG=DE,∠CBG=∠CDE,

又∵∠BHC=∠DHO,∠CBG+∠BHC=90°

∴∠CDE+∠DHO=90°

∴∠DOH=90°

∴BG⊥DE.

(1)根據(jù)正方形的性質(zhì),顯然三角形BCG順時(shí)針旋轉(zhuǎn)90°即可得到三角形DCE,從而判斷兩條直線之間的關(guān)系;

(2)結(jié)合正方形的性質(zhì),根據(jù)SAS仍然能夠判定△BCG≌△DCE,從而證明結(jié)論.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點(diǎn)D在斜邊AB上,分別作DE⊥AC,DF⊥BC,垂精英家教網(wǎng)足分別為E、F,得四邊形DECF,設(shè)DE=x,DF=y.
(1)含y的代數(shù)式表示AE;
(2)y與x之間的函數(shù)關(guān)系式,并求出x的取值范圍;
(3)設(shè)四邊形DECF的面積為S,x在什么范圍時(shí)s隨x增大而增大.x在什么范圍時(shí)s隨x增大而減小,并畫出s與x圖象;
(4)求出x為何值時(shí),面積s最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC的中線,AE=EF=FC,BE、AD相交于點(diǎn)G,下列4個結(jié)論:①DF∥GE;②DF:BG=2:3;③AG=GD;④S△BGD=S四邊形EFDG;其中正確的有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊答案