【題目】如圖,四邊形ABCD的對(duì)角線交于點(diǎn)O,下列哪組條件不能判斷四邊形ABCD是平行四邊形( )
A.OA=OC,OB=OD
B.AB=CD,AO=CO
C.AD∥BC,AD=BC
D.∠BAD=∠BCD,AB∥CD
【答案】B
【解析】A、根據(jù)對(duì)角線互相平分,可得四邊形是平行四邊形,可以證明四邊形ABCD是平行四邊形,A不符合題意;
B、AB=CD,AO=CO不能證明四邊形ABCD是平行四邊形,B符合題意;
C、根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形可以證明四邊形ABCD是平行四邊形,C不符合題意;
D、根據(jù)AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根據(jù)兩組對(duì)角對(duì)應(yīng)相等的四邊形是平行四邊形可以判定,D不符合題意;
故答案為:B.
根據(jù)對(duì)角線互相平分的四邊形是平行四邊形可對(duì)A作出判斷;依據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形可對(duì)C作出判斷;依據(jù)兩組對(duì)角對(duì)應(yīng)相等的四邊形是平行四邊形可對(duì)D作出判斷.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用一條長(zhǎng)40cm的繩子圍成一個(gè)面積為64cm2的矩形.設(shè)矩形的一邊長(zhǎng)為xcm,則可列方程為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對(duì)應(yīng)值如表,則方程ax2+bx+c=0的一個(gè)解的范圍是( )
x | 6.17 | 6.18 | 6.19 | 6.20 |
y | ﹣0.03 | ﹣0.01 | 0.02 | 0.04 |
A.﹣0.01<x<0.02
B.6.17<x<6.18
C.6.18<x<6.19
D.6.19<x<6.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是角平分線,BE平分∠ABC交AD于點(diǎn)E,點(diǎn)O在AB上,以O(shè)B為半徑的⊙O經(jīng)過點(diǎn)E,交AB于點(diǎn)F.
(1)求證:AD是⊙O的切線;
(2)若AC=4,∠C=30°,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,半徑OA⊥OB,過點(diǎn)OA的中點(diǎn)C作FD∥OB交⊙O于D、F兩點(diǎn),且CD=,以O(shè)為圓心,OC為半徑作,交OB于E點(diǎn).
(1)求⊙O的半徑OA的長(zhǎng);
(2)計(jì)算陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組中,不是同類項(xiàng)的是( )
A. 2a 與 a B. a2 b 與 ab2 C. ab 與 ba D. 5 與 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四根小木棒的長(zhǎng)分別為5cm,8cm,12cm,13cm,任選三根組成三角形,其中有 個(gè)直角三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com