【題目】如圖①,∠MON =70°,點(diǎn)AB在∠MON的兩條邊上運(yùn)動(dòng),∠MAB與∠NBA的平分線交于點(diǎn)P

1)點(diǎn)A、B在運(yùn)動(dòng)過程中,∠P的大小會(huì)變嗎?若不會(huì),求∠P的度數(shù);若會(huì),請說明理由.

2)如圖②,繼續(xù)作BC平分∠ABO,AP的反向延長線交BC的延長線于點(diǎn)D,點(diǎn)A、B在運(yùn)動(dòng)過程中,∠D的大小會(huì)變嗎?若不會(huì),求出∠D的度數(shù);若會(huì),請說明理由.

【答案】1)不變,∠P=55°;(2)不變,∠D=35°.

【解析】

1)由三角形內(nèi)角和可求出∠OAB+OBA的度數(shù),根據(jù)三角形外角的性質(zhì)可得∠MAB=OBA+70°,∠NBA=OAB+70°,由角平分線的定義可求出∠PAB+PBA的度數(shù),根據(jù)三角形內(nèi)角和定理即可求出∠P的度數(shù),即可得答案;(2)由角平分線的定義可得∠DBP=90°,由(1)可知∠P=55°,根據(jù)三角形內(nèi)角和定理即可求出∠D的度數(shù),即可得答案.

1)∵在AOB中,∠MON=70°,

∴∠OAB+OBA=180°-70°=110°

∵∠MAB=OBA+70°,∠NBA=OAB+70°

∴∠MAB+NBA=OAB+70°+OBA+70°=250°

∵∠MAB與∠NBA的平分線交于點(diǎn)P

∴∠PAB+PBA=(∠MAB+NBA=125°,

∴∠P=180°-125°=55°,

∴∠P的大小不變,∠P=55°.

2)∵BC平分∠ABO,BP平分∠NBA,

∴∠DBP=ABD+ABP=(∠ABO+NBA=×180°=90°,

∵∠P=55°

∴∠D=180°-90°-55°=35°,

∴∠D的大小不變,∠D=35°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,半徑OAOB,過OA的中點(diǎn)CFDOB交⊙OD、F兩點(diǎn),且CD,以O為圓心,OC為半徑作,交OBE點(diǎn).

1)求⊙O的半徑OA的長;

2)計(jì)算陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知直線直線和直線交于點(diǎn)CD,在C、D之間有一點(diǎn)P.

(1)圖中∠PAC、∠APB、∠PBD之間有什么關(guān)系,并說明理由;

(2)如果P點(diǎn)在C、D之間運(yùn)動(dòng)時(shí),∠PAC、∠APB、∠PBD之間的關(guān)系是否發(fā)生變化?

(3)若點(diǎn)P在直線C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)C、D不重合),試探究∠PAC、∠APB、∠PBD之間的關(guān)系又是如何?分別畫出圖形并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖像與軸交于、兩點(diǎn),與軸交于點(diǎn),點(diǎn)是拋物線頂點(diǎn),點(diǎn)是直線下方的拋物線上一動(dòng)點(diǎn).

)這個(gè)二次函數(shù)的表達(dá)式為____________.

)設(shè)直線的解析式為,則不等式的解集為___________.

)連結(jié)、,并把沿翻折,得到四邊形那么是否存在點(diǎn),使四邊形為菱形?若存在,請求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請說明理由.

)當(dāng)四邊形的面積最大時(shí),求出此時(shí)點(diǎn)的坐標(biāo)和四邊形的最大面積.

)若把條件點(diǎn)是直線下方的拋物線上一動(dòng)點(diǎn).改為點(diǎn)是拋物線上的任一動(dòng)點(diǎn),其它條件不變,當(dāng)以、、為頂點(diǎn)的四邊形為梯形時(shí),直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,分別平分的外角、內(nèi)角、外角.以下結(jié)論:①;②;③平分;④;⑤.其中正確的結(jié)論有( ).

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平分OBE,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB=8cm,AD=12cm,點(diǎn)P在AD邊上以每秒1cm 的速度從點(diǎn)A向點(diǎn)D運(yùn)動(dòng),點(diǎn)Q在BC邊上,以每秒4cm的速度從點(diǎn)C出發(fā),在CB間往返運(yùn)動(dòng),兩個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí)停止(同時(shí)點(diǎn)Q也停止),在運(yùn)動(dòng)以后,以P、D、Q、B四點(diǎn)組成平行四邊形的次數(shù)有__次.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把矩形ABCD沿EF翻折,點(diǎn)B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是(

A. 12B. 24C. 12D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD,AB=6,AD=11.直角尺的直角頂點(diǎn)PAD上滑動(dòng)時(shí)點(diǎn)PA,D不重合),一直角邊始終經(jīng)過點(diǎn)C,另一直角邊與AB交于點(diǎn)E

1CDPPAE相似嗎?如果相似請寫出證明過程;

2是否存在這樣的點(diǎn)P使CDP的周長等于PAE周長的2倍?若存在DP的長;若不存在請說明理由

查看答案和解析>>

同步練習(xí)冊答案