【題目】(閱讀)
為了響應“陽光體育運動”,學校大力開展各項體育項目,現(xiàn)某中學體育隊準備購買100個足球和個籃球作為訓練器材.現(xiàn)已知有A,B兩個供應商給出標價如下:
足球每個200元,籃球每個80元;
A供應商的優(yōu)惠方案:每買一個足球就贈送一個籃球;
B供應商的優(yōu)惠方案:足球、籃球均按定價的80%付款.
(探索)
(1)若,請計算哪種方案劃算?
(2),請用含x的代數(shù)式,分別把兩種方案的費用表示出來.
(拓展)
(3)若,如果兩種方案可以同時使用,請幫助學校設計一種最省錢的方案.
【答案】(1)選擇去A供應商處劃算;(2)當時,A供應商處的方案:元,B供應商處的方案:元;(3)先在A 供應商處購買100 個籃球,再在B 供應商處購買200 個籃球,比較劃算.
【解析】
(1)當時,分別計算出學校付給A,B兩個供應商的錢數(shù),然后進行比較即可得出答案;
(2)利用各自的優(yōu)惠政策即可表示出 A,B兩個方案的費用;
(3)分別計算出單獨使用A,B方案的費用和A,B方案組合的費用,作出比較即可得出答案.
解:(1)當時,A方案:(元),
B方案:(元),
∵20000元<22400元,
∴選擇去A供應商處劃算;
(2)當時,
A供應商處方的案:(元)
B供應商處的方案:(元)
(3)當時,
A供應商處的方案: (元)
B供應商處的方案:(元)
A,B組合:若先在A處買100個籃球,再到B處買200個籃球所花的錢數(shù)為:
(元)
∵
∴先在A 供應商處購買100 個籃球,再在B供應商處購買200 個籃球,比較劃算.
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解九年級學生(共450人)的身體素質(zhì)情況,體育老師對九(1)班的50位學生進行一分鐘跳繩次數(shù)測試,以測試數(shù)據(jù)為樣本,繪制了如下部分頻數(shù)分布表和部分頻數(shù)分布直方圖.
組別 | 次數(shù)x | 頻數(shù)(人數(shù)) |
A | 80≤x<100 | 6 |
B | 100≤x<120 | 8 |
C | 120≤x<140 | m |
D | 140≤x<160 | 18 |
E | 160≤x<180 | 6 |
請結(jié)合圖表解答下列問題:
(1)表中的m=________;
(2)請把頻數(shù)分布直方圖補完整;
(3)這個樣本數(shù)據(jù)的中位數(shù)落在第________組;
(4)若九年級學生一分鐘跳繩次數(shù)(x)合格要求是x≥120,則估計九年級學生中一分鐘跳繩成績不合格的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知是最大的負整數(shù),且,,滿足,請回答下列問題.
(1)請直接寫出,,的值.
(2)若為數(shù)軸上一動點,其對應的數(shù)為,點在0到1之間運動時(即),請化簡式子:.
(3)若,,在數(shù)軸上據(jù)對應的點分別為,,.點,,開始在數(shù)軸上運動,若點以每秒2個單位長度的速度向左運動,同時點和點分別以每秒3個單位長度和每秒8個單位長度的速度向右運動,若點和點之間的距離表示為,點,點之間的距離表示為,設運動時間為,要使的值不變,請直接寫出此時的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級為了解學生課堂發(fā)言情況,隨機抽取該年級部分學生,對他們某天在課堂上發(fā)言的次數(shù)進行了統(tǒng)計,其結(jié)果如下表,并繪制了如圖所示的兩幅不完整的統(tǒng)計圖,已知B、E兩組發(fā)言人數(shù)的比為5:2,請結(jié)合圖中相關數(shù)據(jù)回答下列問題:
(1)則樣本容量容量是______________,并補全直方圖;
(2)該年級共有學生500人,請估計全年級在這天里發(fā)言次數(shù)不少于12的次數(shù);
(3)已知A組發(fā)言的學生中恰有1位女生,E組發(fā)言的學生中有2位男生,現(xiàn)從A組與E組中分別抽一位學生寫報告,請用列表法或畫樹狀圖的方法,求所抽的兩位學生恰好是一男一女的概率。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=a(x﹣1)(x﹣3)與x軸交于A,B兩點,與y軸的正半軸交于點C,其頂點為D.
(1)寫出C,D兩點的坐標(用含a的式子表示);
(2)設S△BCD:S△ABD=k,求k的值;
(3)當△BCD是直角三角形時,求對應拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB=90°,D是AB的中點,過點B作∠CBE=∠A,BE與射線CA相交于點E,與射線CD相交于點F.
(1)如圖,當點E在線段CA上時,求證:BE⊥CD;
(2)若BE=CD,那么線段AC與BC之間具有怎樣的數(shù)量關系?并證明你所得到的結(jié)論;
(3)若△BDF是等腰三角形,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB=AC,BE=CE,下面四個結(jié)論:①BP=CP;②AD⊥BC;③AE平分∠BAC;④∠PBC=∠PCB.其中正確的結(jié)論個數(shù)有( )個.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為(a,0),(b,0),且滿足現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到點A,B的對應點C,D,連接AC,BD.
(1)求點C,D的坐標及四邊形ABDC的面積;
(2)在y軸上是否存在一點M,連接MA,MB,使S△MAB=S四邊形ABDC?若存在這樣一點,求出點M的坐標;若不存在,試說明理由;
(3)點P是射線BD上的一個動點(不與B,D重合),連接PC,PA,求∠CPA與∠DCP、∠BAP之間的關系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com