【題目】如圖,BD∥GE,AQ平分∠FAC,交BD于Q,∠GFA=50°,∠Q=25°,則∠ACB的度數(shù)( )
A.
B.
C.
D.
【答案】C
【解析】過點(diǎn)A作AH∥BD,
∵BD∥GE,
∴BD∥GE∥AH,
∵∠GFA=50°,∠Q=25°,
∴∠FAH=50°,∠HAQ=∠Q=25°,
∴∠FAQ=∠FAH+∠HAQ=50°+25°=75°.
∵AQ平分∠FAC,
∴∠FAQ=∠CAQ=75°,
∵∠ACB是△ACQ的外角,
∴∠ACB=∠CAQ+∠Q=75°+25°=100°.
所以答案是:C.
【考點(diǎn)精析】本題主要考查了角的平分線和平行線的判定與性質(zhì)的相關(guān)知識點(diǎn),需要掌握從一個角的頂點(diǎn)引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線;由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD的兩條邊在坐標(biāo)軸上,點(diǎn)D與坐標(biāo)原點(diǎn)O重合,且AD=8,AB=6.如圖2,矩形ABCD沿OB方向以每秒1個單位長度的速度運(yùn)動,同時點(diǎn)P從A點(diǎn)出發(fā)也以每秒1個單位長度的速度沿矩形ABCD的邊AB經(jīng)過點(diǎn)B向點(diǎn)C運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時,矩形ABCD和點(diǎn)P同時停止運(yùn)動,設(shè)點(diǎn)P的運(yùn)動時間為t秒.
(1)當(dāng)t=5時,請直接寫出點(diǎn)D、點(diǎn)P的坐標(biāo);
(2)當(dāng)點(diǎn)P在線段AB或線段BC上運(yùn)動時,求出△PBD的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出相應(yīng)t的取值范圍;
(3)點(diǎn)P在線段AB或線段BC上運(yùn)動時,作PE⊥x軸,垂足為點(diǎn)E,當(dāng)△PEO與△BCD相似時,求出相應(yīng)的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A.﹣a2?(﹣a3)=a6
B.(a2)﹣3=a﹣6
C.( )﹣2=﹣a2﹣2a﹣1
D.(2a+1)0=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】補(bǔ)全證明過程,即在橫線處填上遺漏的結(jié)論或理由. 已知:如圖,∠1=∠2,∠C=∠D.
求證:∠A=∠F.
證明:∵∠1=∠2(已知)
又∠1=∠DMN()
∴∠2=∠(等量代換)
∴DB∥EC()
∴∠C=∠ABD()
∵∠C=∠D(已知)
∴∠D=∠ABD()
∴(內(nèi)錯角相等,兩直線平行)
∴∠A=∠F()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程x2-4x-1=0配方后可變形成( )
A. (x+2)2=3 B. (x-2)2=3 C. (x+2)2=5 D. (x-2)2=5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com