【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90,點(diǎn)D為AB邊上的一點(diǎn),

(1)試說明:∠EAC=∠B ;(2)若AD=10,BD=24,求DE的長(zhǎng).

【答案】(1)見解析;(2DE26

【解析】試題分析:(1)由于△ACB△ECD都是等腰直角三角形,CD=CE,CB=CA,∠B=∠CAB=45°∠ACB=∠ECD=90°,于是∠ACE+∠ACD=∠ACD+∠BCD,根據(jù)等式性質(zhì)可得∠ACE=∠BCD,利用SAS可證△ACE≌△BCD,利用全等三角形的對(duì)應(yīng)角相等即可解答;

2)根據(jù)△ACE≌△BCD,于是∠EAC=∠B=45°,AE=BD=24,易求∠EAD=90°,再利用勾股定理可求DE=26

解:(1∵∠ACB=∠ECD=90°,

∴∠ACB﹣∠ACD=∠ECD﹣∠ACD,

∴∠ECA=∠DCB,

∵△ACB△ECD都是等腰三角形,

∴EC=DC,AC=BC

△ACE△BCD中,

,

∴△ACE≌△BCD,

∴∠EAC=∠B

2∵△ACE≌△BCD,

∴AE=BD=24

∵∠EAC=∠B=45°

∴∠EAD=∠EAC+∠CAD=90°,

Rt△ADE中,DE2=EA2+AD2,

∴DE2=102+242,

∴DE=26

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a-b+c的相反數(shù)是

A. –a-b-c B. –a+b-c C. -a-b+c D. a+b-c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大型企業(yè)為了保護(hù)環(huán)境,準(zhǔn)備購(gòu)買A、B兩種型號(hào)的污水處理設(shè)備共8臺(tái),用于同時(shí)治理不同成分的污水,若購(gòu)買A型2臺(tái)、B型3臺(tái)需54萬,購(gòu)買A型4臺(tái)、B型2臺(tái)需68萬元

(1)求出A型、B型污水處理設(shè)備的單價(jià);

(2)經(jīng)核實(shí),一臺(tái)A型設(shè)備一個(gè)月可處理污水220噸,一臺(tái)B型設(shè)備一個(gè)月可處理污水190噸,如果該企業(yè)每月的污水處理量不低于1565噸,請(qǐng)你為該企業(yè)設(shè)計(jì)一種最省錢的購(gòu)買方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正比例函數(shù)y=(4m+6)x , 當(dāng)m 時(shí),函數(shù)圖象經(jīng)過第二、四象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.點(diǎn)P在線段AB上以1cm/s的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上由點(diǎn)B向點(diǎn)D運(yùn)動(dòng).它們運(yùn)動(dòng)的時(shí)間為t(s).

(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)t=1時(shí),△ACP與△BPQ是否全等,請(qǐng)說明理由,并判斷此時(shí)線段PC和線段PQ的位置關(guān)系;

(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為x cm/s,是否存在實(shí)數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)多邊形的每個(gè)外角都等于60°,則它的內(nèi)角和等于( )
A.180°
B.720°
C.1080°
D.540°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某人存入5000元參加三年期教育儲(chǔ)蓄(免征利息稅),本息共得5417元,那么這種儲(chǔ)蓄的年利率為

A222%B258%C278% D238%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠C=90°,AB=5cmBC=3cm,若動(dòng)點(diǎn)P從點(diǎn)C開始,按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒1cm,設(shè)出發(fā)的時(shí)間為t秒.

1若點(diǎn)P恰好在∠BAC的角平分線上,求t的值;

2)問t為何值時(shí),BCP為等腰三角形?

3)另有一點(diǎn)Q,從點(diǎn)C開始,按C→B→A→C的路徑運(yùn)動(dòng),且速度為每秒2cm,若P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)P、Q中有一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).當(dāng)t為何值時(shí),直線PQABC的周長(zhǎng)分成相等的兩部分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,∠D+B=60°,則∠C=(  )

A.30°B.90°C.120°D.150°

查看答案和解析>>

同步練習(xí)冊(cè)答案