【題目】如圖,點O是等邊ABC內(nèi)一點,AOB=110°,∠BOC=α,將BOC繞點C按順時針方向旋轉(zhuǎn)60°ADC,連接OD,得△AOD,若△AOD為等腰三角形,則α=________

【答案】110°或125°或140°

【解析】

找到變化中的不變量,然后利用旋轉(zhuǎn)及全等的性質(zhì)即可做出解答.

解:①要使AO=AD,需∠AOD=∠ADO,

∵∠AOD=360°-110°-60°-α=190°-α,∠ADO=α-60°,

∴190°-α=α-60°,

∴α=125°;

②要使OA=OD,需∠OAD=∠ADO.

∵∠OAD=180°-(∠AOD+∠ADO)=180°-(190°-α+α-60°)=50°,

∴α-60°=50°,

∴α=110°;

③要使OD=AD,需∠OAD=∠AOD.

∵∠AOD=360°-110°-60°-α=190°-α,

∠OAD==120°-,

∴190°-α=120°-,

解得α=140°.

綜上所述:當(dāng)α的度數(shù)為125°或110°或140°時,△AOD是等腰三角形.

故答案為: 110°或125°或140°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠BAC30°EAB邊的中點,以BE為邊作等邊BDE,連接AD、CD

1)求證:ADCD;

2)①畫圖:在AC邊上找一點H,使得BH+EH最。ㄒ螅簩懗鲎鲌D過程并畫出圖形,不用說明作圖依據(jù));

②當(dāng)BC2時,求出BH+EH的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(5,0)、C(0,5)三點.

(1)求拋物線的函數(shù)關(guān)系式;

(2)求拋物線的頂點坐標(biāo)、對稱軸;

(3)若過點C的直線與拋物線相交于點E(4,m),請連接CB,BE并求出△CBE的面積S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,點E,F分別在邊ABCD上,點GH在對角線AC上,AGCH,BEDF

1)求證:四邊形EGFH是平行四邊形;

2)若EGEH,AB8,BC4.求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O△ABC的外接圓,AB為直徑,∠BAC的平行線交⊙O與點D,過點D的切線分別交ABAC的延長線與點E、F

1)求證:AF⊥EF

2)小強(qiáng)同學(xué)通過探究發(fā)現(xiàn):AF+CF=AB,請你幫忙小強(qiáng)同學(xué)證明這一結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點,B點的坐標(biāo)為(3,0),與y軸交于點C(0,-3),點P是直線BC下方拋物線上的一個動點.

(1)求二次函數(shù)解析式;

(2)連接PO,PC,并將POC沿y軸對折,得到四邊形.是否存在點P,使四邊形為菱形?若存在,求出此時點P的坐標(biāo);若不存在,請說明理由;

(3)當(dāng)點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老師在講完乘法公式的多種運用后,要求同學(xué)們運用所學(xué)知識解答:求代數(shù)式的最小值?同學(xué)們經(jīng)過交流、討論,最后總結(jié)出如下解答方法:

解:

,

當(dāng)時,的值最小,最小值是0,

當(dāng)時,的值最小,最小值是1

的最小值是1.

請你根據(jù)上述方法,解答下列各題

1)當(dāng)x=______時,代數(shù)式的最小值是______

2)若,當(dāng)x=______時,y有最______值(填),這個值是______;

3)若,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象經(jīng)過(2,1),(1,1)兩點,則下列關(guān)于此二次函數(shù)的說法正確的是【 】

A.y的最大值小于0      B.當(dāng)x=0時,y的值大于1

C.當(dāng)x=1時,y的值大于1  D.當(dāng)x=3時,y的值小于0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線A(2,3),B(4,3),C(6,﹣5)三點.

(1)求拋物線的表達(dá)式;

(2)如圖,拋物線上一點D在線段AC的上方,DEABAC于點E,若滿足,求點D的坐標(biāo);

(3)如圖②,F為拋物線頂點,過A作直線lAB,若點P在直線l上運動,點Qx軸上運動,是否存在這樣的點PQ,使得以B、PQ為頂點的三角形與ABF相似,若存在,求PQ的坐標(biāo),并求此時BPQ的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案