已知矩形的面積為36cm2,相鄰的兩條邊長分別為xcm和ycm,則y與x之間的函數(shù)圖象大致是( )
A.
B.
C.
D.
【答案】分析:根據(jù)題意有:xy=36;故y與x之間的函數(shù)圖象為反比例函數(shù),且根據(jù)x、y實(shí)際意義x、y應(yīng)>0,其圖象在第一象限,即可得出答案.
解答:解:∵矩形的面積為36cm2,相鄰的兩條邊長分別為xcm和ycm,
∴xy=36,
∴函數(shù)解析式為:y=(x>0,y>0).
故選A.
點(diǎn)評:本題考查了反比例函數(shù)的應(yīng)用,屬于基礎(chǔ)應(yīng)用性題目,現(xiàn)實(shí)生活中存在大量成反比例函數(shù)的兩個(gè)變量,解答該類問題的關(guān)鍵是確定兩個(gè)變量之間的函數(shù)關(guān)系,然后利用實(shí)際意義確定其所在的象限.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知矩形ABCD的面積為36,以此矩形的對稱軸為坐標(biāo)軸建立平面直角坐標(biāo)系,設(shè)點(diǎn)A的坐標(biāo)為(x,y),其中x>0,y>0.
(1)求出y與x之間的函數(shù)關(guān)系式,求出自變量x的取值范圍;
(2)用x、y表示矩形ABCD的外接圓的面積S,并用下列方法,解答后面的問題:精英家教網(wǎng)
方法:∵a2+
k2
a2
=(a-
k
a
)2+2k
(k為常數(shù)且k>0,a≠0),
(a-
k
a
)2≥0

a2+
k2
a2
≥2k

∴當(dāng)a-
k
a
=0,即a=±
k
時(shí),a2+
k2
a2
取得最小值2k.
問題:當(dāng)點(diǎn)A在何位置時(shí),矩形ABCD的外接圓面積S最小并求出S的最小值;
(3)如果直線y=mx+2(m<0)與x軸交于點(diǎn)P,與y軸交于點(diǎn)Q,那么是否存在這樣的實(shí)數(shù)m,使得點(diǎn)P、Q與(2)中求出的點(diǎn)A構(gòu)成APQ的面積是矩形ABCD面積的
1
6
?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,中,,,點(diǎn)在線段上運(yùn)動,點(diǎn)分別在線段、上,且使得四邊形是矩形.設(shè)的長為,矩形的面積為,已知的函數(shù),其圖象是過點(diǎn)(12,36)的拋物線的一部分(如圖2所示).

(1)求的長;

(2)當(dāng)為何值時(shí),矩形的面積最大,并求出最大值.

為了解決這個(gè)問題,孔明和研究性學(xué)習(xí)小組的同學(xué)作了如下討論:

張明:圖2中的拋物線過點(diǎn)(12,36)在圖1中表示什么呢?

李明:因?yàn)閽佄锞上的點(diǎn)是表示圖1中的長與矩形面積的對應(yīng)關(guān)系,那么,(12,36)表示當(dāng)時(shí),的長與矩形面積的對應(yīng)關(guān)系.

趙明:對,我知道縱坐標(biāo)36是什么意思了!

孔明:哦,這樣就可以算出,這個(gè)問題就可以解決了.

    請根據(jù)上述對話,幫他們解答這個(gè)問題.


圖1                                                                              圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新課標(biāo)九年級數(shù)學(xué)競賽培訓(xùn)第11講:雙曲線(解析版) 題型:解答題

已知矩形ABCD的面積為36,以此矩形的對稱軸為坐標(biāo)軸建立平面直角坐標(biāo)系,設(shè)點(diǎn)A的坐標(biāo)為(x,y),其中x>0,y>0.
(1)求出y與x之間的函數(shù)關(guān)系式,求出自變量x的取值范圍;
(2)用x、y表示矩形ABCD的外接圓的面積S,并用下列方法,解答后面的問題:
方法:∵(k為常數(shù)且k>0,a≠0),


∴當(dāng)=0,即時(shí),取得最小值2k.
問題:當(dāng)點(diǎn)A在何位置時(shí),矩形ABCD的外接圓面積S最小并求出S的最小值;
(3)如果直線y=mx+2(m<0)與x軸交于點(diǎn)P,與y軸交于點(diǎn)Q,那么是否存在這樣的實(shí)數(shù)m,使得點(diǎn)P、Q與(2)中求出的點(diǎn)A構(gòu)成APQ的面積是矩形ABCD面積的?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(03)(解析版) 題型:解答題

(2002•昆明)已知矩形ABCD的面積為36,以此矩形的對稱軸為坐標(biāo)軸建立平面直角坐標(biāo)系,設(shè)點(diǎn)A的坐標(biāo)為(x,y),其中x>0,y>0.
(1)求出y與x之間的函數(shù)關(guān)系式,求出自變量x的取值范圍;
(2)用x、y表示矩形ABCD的外接圓的面積S,并用下列方法,解答后面的問題:
方法:∵(k為常數(shù)且k>0,a≠0),


∴當(dāng)=0,即時(shí),取得最小值2k.
問題:當(dāng)點(diǎn)A在何位置時(shí),矩形ABCD的外接圓面積S最小并求出S的最小值;
(3)如果直線y=mx+2(m<0)與x軸交于點(diǎn)P,與y軸交于點(diǎn)Q,那么是否存在這樣的實(shí)數(shù)m,使得點(diǎn)P、Q與(2)中求出的點(diǎn)A構(gòu)成APQ的面積是矩形ABCD面積的?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年云南省昆明市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•昆明)已知矩形ABCD的面積為36,以此矩形的對稱軸為坐標(biāo)軸建立平面直角坐標(biāo)系,設(shè)點(diǎn)A的坐標(biāo)為(x,y),其中x>0,y>0.
(1)求出y與x之間的函數(shù)關(guān)系式,求出自變量x的取值范圍;
(2)用x、y表示矩形ABCD的外接圓的面積S,并用下列方法,解答后面的問題:
方法:∵(k為常數(shù)且k>0,a≠0),


∴當(dāng)=0,即時(shí),取得最小值2k.
問題:當(dāng)點(diǎn)A在何位置時(shí),矩形ABCD的外接圓面積S最小并求出S的最小值;
(3)如果直線y=mx+2(m<0)與x軸交于點(diǎn)P,與y軸交于點(diǎn)Q,那么是否存在這樣的實(shí)數(shù)m,使得點(diǎn)P、Q與(2)中求出的點(diǎn)A構(gòu)成APQ的面積是矩形ABCD面積的?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案