精英家教網(wǎng)二次函數(shù)y=ax2+bx+c的圖象的一部分如圖,已知它的頂點M在第二象限,且經(jīng)過點A(1,0)和點B(0,1).
(1)請判斷實數(shù)a的取值范圍,并說明理由;
(2)設此二次函數(shù)的圖象與x軸的另一個交點為C,當△AMC的面積為△ABC面積的
54
倍時,求a的值.
分析:(1)將A、B代入拋物線的解析式中,可得出a、b的關(guān)系式,然后用a表示出拋物線的解析式.根據(jù)圖象首先肯定的是拋物線的開口向下,因此a<0,由于拋物線頂點在第二象限即拋物線對稱軸在y軸左側(cè),根據(jù)拋物線的對稱性可知:A點關(guān)于拋物線的對稱點必在(-1,0)的左側(cè),因此當x=-1時,拋物線的值必大于0由此可求出a的取值范圍;
(2)根據(jù)拋物線的解析式(只含a一個待定系數(shù)的函數(shù)式)表示出頂點M和C點的坐標,然后根據(jù)題中給出的面積的等量關(guān)系式,可求出a的值.
解答:解:(1)由圖象可知:a<0
圖象過點(0,1),
所以c=1,圖象過點(1,0),
則a+b+1=0
當x=-1時,應有y>0,則a-b+1>0
將a+b+1=0代入,可得a+(a+1)+1>0,
解得a>-1
所以,實數(shù)a的取值范圍為-1<a<0;

(2)此時函數(shù)y=ax2-(a+1)x+1,
M點縱坐標為:
4a-(a+1)2
4a
=
-(a-1)2
4a

圖象與x軸交點坐標為:ax2-(a+1)x+1=0,
解得;x 1=1,x 2=
1
a

則AC=1-
1
a
=
a-1
a
,
要使S△AMC=
1
2
×
-(a-1)2
4a
×
a-1
a
=
(1-a)3
8a2
=
5
4
S△ABC=
5
4
a-1
2a

可求得a=
-3+
5
2
點評:本題主要考查了拋物線的性質(zhì)、圖形面積的求法等知識點.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點,與y軸交于精英家教網(wǎng)點C(0,
3
)
,當x=-4和x=2時,二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連接AC、BC.
(1)求實數(shù)a,b,c的值;
(2)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動,當運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,求t的值及點P的坐標;
(3)在(2)的條件下,拋物線的對稱軸上是否存在點Q,使得以B,N,Q為頂點的三角形與△ABC相似?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

二次函數(shù)y=ax2+bx+c,當x=
12
時,有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果二次函數(shù)y=ax2+bx+c的圖象的頂點坐標是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點,PQ:QR=1:3,求這個二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①abc>0;②2a+b=0;③a+b+c>0;④當-1<x<3時,y>0.其中正確結(jié)論的序號是
②③④
②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•孝感)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示.對于下列說法:
①abc<0;②a-b+c<0;③3a+c<0;④當-1<x<3時,y>0.
其中正確的是
①②③
①②③
(把正確的序號都填上).

查看答案和解析>>

同步練習冊答案