【題目】如圖(1),在平面直角坐標系中,點,點,點從點出發(fā),沿1個單位每秒的速度勻速運動,同時點從點出發(fā),沿軸正方向以2個單位每秒的速度勻速運動.,交于點,交軸于點.當點到達點時,兩點同時停止運動,設運動的時間為秒.在整個運動過程中,設的重疊部分的面積為

1)求當為何值時,點與點在同一直線上;

2)求關于的函數(shù)關系式;

3)在圖(3)中畫出關于的函數(shù)圖象,直接寫出的最大值.

【答案】14;(2;(3)詳見解析,的最大值等于8

【解析】

1)如圖1,當當點與點在同一直線上時,可得是等腰直角三角形,根據(jù),構(gòu)造關于t的方程,解方程即可;

(2)根據(jù)題意求出點G坐標為,分為三種情況分類討論,利用割補法求出函數(shù)關系式;

3)畫出函數(shù)圖像,根據(jù)圖像可以直接寫出的最大值等于8

解:(1)由點,點得△OAB為等腰直角三角形,

都是等腰直角三角形.

如圖,當點與點在同一直線上時,

是等腰直角三角形,

6-t=2t-6,

t=4;

2)在中,,

是等腰直角三角形,

OE=OD=2t

,

∴點G坐標為

如圖2,當

=;

如圖3當時,

=;

如圖4,當時,

3)如圖,由函數(shù)圖像得的最大值等于8

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某學校招聘數(shù)學教師,本次招聘進行專業(yè)技能測試和課堂教學展示兩個項目的考核,這兩項考核的滿分均為100分,學校將這兩個項目的得分按一定的比例計算出總成績.經(jīng)統(tǒng)計,參加考核的4名考生的兩個項目的得分如下:

1)經(jīng)過計算,1號考生的總成績?yōu)?/span>78分,求專業(yè)技能測試得分和課堂教學展示得分分別占總成績的百分比;

2)若學校錄取總成績最高的考生,通過計算說明,4名考生中哪一名考生會被錄?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC 中,∠ACB 為鈍角,邊 AC 繞點 A 沿逆時針方向旋轉(zhuǎn) 90°得到AD,邊 BC 繞點 B 沿順時針方向旋轉(zhuǎn) 90°得到 BE,作 DMAB 于點 M,ENAB N AB10,EN4, DM__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的頂點為A、C在雙曲線y1=上,B、D在雙曲線上,k1=2k2k10),ABy軸,=24,則k2的值為(

A.4B.4C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABOC的頂點O在坐標原點,邊BOx軸的負半軸上,,頂點C的坐標為x反比例函數(shù)的圖象與菱形對角線AO交于點D,連接BD,當軸時,k的值是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,點O在斜邊AB上,以O為圓心,OB長為半徑作⊙O,與BC交于點D,連結(jié)AD,已知

1)求證:AD是⊙O的切線;

2)若BC=8,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】初三年級教師對試卷講評課中學生參與的深度和廣度進行評價調(diào)查,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名初中學生的參與情況,繪制了如圖兩幅不完整的統(tǒng)計圖,請根據(jù)圖中所給信息解答下列問題:

1)在這次評價中,一共抽查了   名學生;

2)請將條形統(tǒng)計圖補充完整;

3)如果全市有12000名初中學生,那么在試卷講評課中,獨立思考的學生約有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)ykx+bk≠0)與反比例函數(shù)ym≠0)的圖象相交于A(2,4),B(n,﹣2)兩點.

1)求一次函數(shù)和反比例函數(shù)的表達式;

2)點C是第一象限內(nèi)反比例函數(shù)圖象上的一點,且點CA的右側(cè),過點CCD平行于y軸交直線AB于點D,若以C為圓心,CD長為半徑的⊙C恰好與y軸相切,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點上的定點,點為優(yōu)弧上的動點(不與點重合),在點運動的過程中,以下結(jié)論正確的是(

A.的大小改變B.到弦所在直線的距離存在最大值

C.線段的長度之和不變D.圖中陰影部分的面積不變

查看答案和解析>>

同步練習冊答案