巳知二次函數(shù)y=a(x2-6x+8)(a>0)的圖象與x軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C.點(diǎn)D是拋物線的頂點(diǎn).
(1)如圖①.連接AC,將△OAC沿直線AC翻折,若點(diǎn)O的對應(yīng)點(diǎn)0'恰好落在該拋物線的對稱軸上,求實(shí)數(shù)a的值;
(2)如圖②,在正方形EFGH中,點(diǎn)E、F的坐標(biāo)分別是(4,4)、(4,3),邊HG位于邊EF的右側(cè).小林同學(xué)經(jīng)過探索后發(fā)現(xiàn)了一個正確的命題:“若點(diǎn)P是邊EH或邊HG上的任意一點(diǎn),則四條線段PA、PB、PC、PD不能與任何一個平行四邊形的四條邊對應(yīng)相等(即這四條線段不能構(gòu)成平行四邊形).“若點(diǎn)P是邊EF或邊FG上的任意一點(diǎn),剛才的結(jié)論是否也成立?請你積極探索,并寫出探索過程;
(3)如圖②,當(dāng)點(diǎn)P在拋物線對稱軸上時,設(shè)點(diǎn)P的縱坐標(biāo)l是大于3的常數(shù),試問:是否存在一個正數(shù)a,使得四條線段PA、PB、PC、PD與一個平行四邊形的四條邊對應(yīng)相等(即這四條線段能構(gòu)成平行四邊形)?請說明理由.
(1)令y=0,由解得;
令x=0,解得y=8a.
∴點(diǎn)A、B、C的坐標(biāo)分別是(2,0)、(4,0)、(0,8a),
該拋物線對稱軸為直線x=3.
∴OA=2.
如圖①,設(shè)拋物線對稱軸與x軸交點(diǎn)為M,則AM=1.
由題意得:.
∴,∴∠O′AM=60°.
∴,即.∴.
(2)若點(diǎn)P是邊EF或邊FG上的任意一點(diǎn),結(jié)論同樣成立.
(Ⅰ)如圖②,設(shè)點(diǎn)P是邊EF上的任意一點(diǎn)(不與點(diǎn)E重合),連接PM.
∵點(diǎn)E(4,4)、F(4,3)與點(diǎn)B(4,0)在一直線上,點(diǎn)C在y軸上,
∴PB<4,PC≥4,∴PC>PB.
又PD>PM>PB,PA>PM>PB,
∴PB≠PA,PB≠PC,PB≠PD.
∴此時線段PA、PB、PC、PD不能構(gòu)成平行四邊形.
(Ⅱ)設(shè)P是邊FG上的任意一點(diǎn)(不與點(diǎn)G重合),
∵點(diǎn)F的坐標(biāo)是(4,3),點(diǎn)G的坐標(biāo)是(5,3).
∴FB=3,,∴3≤PB<.
∵PC≥4,∴PC>PB.
(3)存在一個正數(shù)a,使得線段PA、PB、PC能構(gòu)成一個平行四邊形.
如圖③,∵點(diǎn)A、B時拋物線與x軸交點(diǎn),點(diǎn)P在拋物線對稱軸上,
∴PA=PB.
∴當(dāng)PC=PD時,線段PA、PB、PC能構(gòu)成一個平行四邊形.
∵點(diǎn)C的坐標(biāo)是(0,8a),點(diǎn)D的坐標(biāo)是(3,-a).
點(diǎn)P的坐標(biāo)是(3,t),
∴PC2=32+(t-8a)2,PD2=(t+a)2.
整理得7a2-2ta+1=0,∴Δ=4t2-28.
∵t是一個常數(shù)且t>3,∴Δ=4t2-28>0
∴方程7a2-2ta+1=0有兩個不相等的實(shí)數(shù)根.
顯然,滿足題意.
∵當(dāng)t是一個大于3的常數(shù),存在一個正數(shù),使得線段PA、PB、PC能構(gòu)成一個平行四邊形.
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
巳知二次函數(shù)y=a(x2-6x+8)(a>0)的圖象與x軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C.點(diǎn)D是拋物線的頂點(diǎn).
(1)如圖①.連接AC,將△OAC沿直線AC翻折,若點(diǎn)O的對應(yīng)點(diǎn)0'恰好落在該拋物線的對稱軸上,求實(shí)數(shù)a的值;
(2)如圖②,在正方形EFGH中,點(diǎn)E、F的坐標(biāo)分別是(4,4)、(4,3),邊HG位于邊EF的右側(cè).小林同學(xué)經(jīng)過探索后發(fā)現(xiàn)了一個正確的命題:“若點(diǎn)P是邊EH或邊HG上的任意一點(diǎn),則四條線段PA、PB、PC、PD不能與任何一個平行四邊形的四條邊對應(yīng)相等(即這四條線段不能構(gòu)成平行四邊形).“若點(diǎn)P是邊EF或邊FG上的任意一點(diǎn),剛才的結(jié)論是否也成立?請你積極探索,并寫出探索過程;
(3)如圖②,當(dāng)點(diǎn)P在拋物線對稱軸上時,設(shè)點(diǎn)P的縱坐標(biāo)l是大于3的常數(shù),試問:是否存在一個正數(shù)a,使得四條線段PA、PB、PC、PD與一個平行四邊形的四條邊對應(yīng)相等(即這四條線段能構(gòu)成平行四邊形)?請說明理由.
【解析】二次函數(shù)的綜合運(yùn)用
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆北京市西城區(qū)九年級一模數(shù)學(xué)卷(解析版) 題型:解答題
巳知二次函數(shù)y=a(x2-6x+8)(a>0)的圖象與x軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C.點(diǎn)D是拋物線的頂點(diǎn).
(1)如圖①.連接AC,將△OAC沿直線AC翻折,若點(diǎn)O的對應(yīng)點(diǎn)0'恰好落在該拋物線的對稱軸上,求實(shí)數(shù)a的值;
(2)如圖②,在正方形EFGH中,點(diǎn)E、F的坐標(biāo)分別是(4,4)、(4,3),邊HG位于邊EF的右側(cè).小林同學(xué)經(jīng)過探索后發(fā)現(xiàn)了一個正確的命題:“若點(diǎn)P是邊EH或邊HG上的任意一點(diǎn),則四條線段PA、PB、PC、PD不能與任何一個平行四邊形的四條邊對應(yīng)相等(即這四條線段不能構(gòu)成平行四邊形).“若點(diǎn)P是邊EF或邊FG上的任意一點(diǎn),剛才的結(jié)論是否也成立?請你積極探索,并寫出探索過程;
(3)如圖②,當(dāng)點(diǎn)P在拋物線對稱軸上時,設(shè)點(diǎn)P的縱坐標(biāo)l是大于3的常數(shù),試問:是否存在一個正數(shù)a,使得四條線段PA、PB、PC、PD與一個平行四邊形的四條邊對應(yīng)相等(即這四條線段能構(gòu)成平行四邊形)?請說明理由.
【解析】二次函數(shù)的綜合運(yùn)用
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com