D
分析:此題可利用排除法進(jìn)行判斷,根據(jù)二次函數(shù)圖象的開口方向確定a>0,再根據(jù)對稱軸在y軸左,可確定a與b同號,然后再根據(jù)二次函數(shù)與y軸的交點可以確定c<0,進(jìn)而可以判斷出A的正誤,然后再根據(jù)拋物線與x軸的交點個數(shù)可以判斷出B的正誤,再根據(jù)x=-1時,結(jié)合圖象可得到y(tǒng)的正負(fù),進(jìn)而可以判斷出C的正誤,進(jìn)而得到答案.
解答:∵拋物線開口向上,
∴a>0,
∵對稱軸在y軸左側(cè),
∴a與b同號,
∴b>0,
∵拋物線與y軸交于負(fù)半軸,
∴c<0,
∴abc<0,故A正確;
∵拋物線與x軸有兩個交點,
∴b2-4ac>0,故B正確;
當(dāng)x=-1時,a-b+c<0,故C正確;
故選:D.
點評:此題主要考查了二次函數(shù)圖象與系數(shù)的關(guān)系,關(guān)鍵是掌握二次函數(shù)y=ax2+bx+c(a≠0),
①二次項系數(shù)a決定拋物線的開口方向和大。
當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口.
②一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置.
當(dāng)a與b同號時(即ab>0),對稱軸在y軸左; 當(dāng)a與b異號時(即ab<0),對稱軸在y軸右.(簡稱:左同右異)
③常數(shù)項c決定拋物線與y軸交點. 拋物線與y軸交于(0,c).
④拋物線與x軸交點個數(shù).
△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.