精英家教網 > 初中數學 > 題目詳情

【題目】在我市某一城市美化工程招標時,有甲、乙兩個工程隊投標,經測算:甲隊單獨完成這項工程需要60天,若由甲隊先做20天,剩下的工程由甲、乙合作24天可完成.

1)乙隊單獨完成這項工程需要多少天?

2)甲隊施工一天,需付工程款3.5萬元,乙隊施工一天需付工程款2萬元.若該工程計劃在70天內完成,在不超過計劃天數的前提下,是由甲隊或乙隊單獨完成工程省錢?還是由甲乙兩隊全程合作完成該工程省錢?

【答案】1)乙隊單獨完成需90天;(2)在不超過計劃天數的前提下,由甲、乙合作完成最省錢.

【解析】

1)求的是乙的工效,工作時間明顯.一定是根據工作總量來列等量關系.等量關系為:甲20天的工作量+甲乙合作24天的工作總量=1

2)根據題意,分別求出三種情況的費用,然后把在工期內的情況進行比較即可.

解:(1)設乙隊單獨完成需x天.

根據題意,得:

解這個方程得:x=90

經檢驗,x=90是原方程的解.

∴乙隊單獨完成需90天.

2)設甲、乙合作完成需y天,則有

解得,y=36;

①甲單獨完成需付工程款為:60×3.5=210(萬元).

②乙單獨完成超過計劃天數不符題意,

③甲、乙合作完成需付工程款為:36×3.5+2=198(萬元).

答:在不超過計劃天數的前提下,由甲、乙合作完成最省錢.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】中,,點是直線上一點(不與、重合),以為一邊在的右側作,使,,連接.

1)如圖1,當點在線段上時,如果,則______度;

2)設,.

①如圖2,當點在線段上移動,則,之間有怎樣的數量關系?請說明理由;

②當點在直線上時,則之間有怎樣的數量關系?

寫出所有可能的結論并說明條件.

答:(2)①數量關系____________.

理由:

②數量關系____________.

備用圖:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖(1),在中,已知,,把一塊含角的三角板的直角頂點放在的中點上(直角三角板的短直角邊為,長直角邊為),將直角三角板點按逆時針方向旋轉.

(1)在圖(1)中,,

①證明

②在這一過程中,直角三角板的重疊部分為四邊形,請說明四邊形的面積是否發(fā)生變化?若發(fā)生變化,請說明是如何變化的,若不發(fā)生變化,求出其面積.

2)繼續(xù)旋轉至如圖(2)的位置,延長,延長,是否仍然成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】隨著人們環(huán)保意識的不斷增強,我市家庭電動自行車的擁有量逐年增加.據統計,某小區(qū)2014年底擁有家庭電動自行車125輛,2016年底家庭電動自行車的擁有量達到180輛.

(1)若該小區(qū)2014年底到2017年底家庭電動自行車擁有量的年平均增長率相同,則該小區(qū)到2017年底電動自行車將達到多少輛?

(2)為了緩解停車矛盾,該小區(qū)決定投資3萬元再建若干個停車位,據測算,建造費用分別為室內車位1000元/個,露天車位200元/個.考慮到實際因素,計劃露天車位的數量不少于室內車位的2倍,但不超過室內車位的2.5倍,則該小區(qū)最多可建兩種車位各多少個?試寫出所有可能的方案.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠B=90°AB=BC=5cm,點Q從點A開始沿AB邊向點Blcm/s的速度移動點P從點B開始沿BC邊向點C2cm/s速度移動,兩點同時出發(fā),連接PQ

1)經過多長時間后,PBQ的面積等于4cm2?

2PBQ的面積能否等于7cm2?試說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將繞點A順時針旋轉到的位置,點BO分別落在點處,點x軸上,再將繞點順時針旋轉到的位置,點x軸上,將繞點順時針旋轉到的位置,點x軸上,依次進行下去若點,,則點的坐標為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】⊙O中,AB為直徑,C⊙O上一點.

(1)如圖1,過點C⊙O的切線,與AB延長線相交于點P,若∠CAB=27°,求∠P的度數;

(2)如圖2,D為弧AB上一點,OD⊥AC,垂足為E,連接DC并延長,與AB的延長線交于點P,若∠CAB=10°,求∠P的大。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,MN是⊙O的直徑,作ABMN,垂足為點D,連接AM,AN,點C為弧AN上一點,且弧AC=AM,連接CM,交AB于點E,交AN于點F,現給出以下結論:

AD=BD;②∠MAN=90°;③弧AM=BM;④∠ACM+∠ANM=MOB;AE=MF.

其中正確結論的個數是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,C=90°,AC=4cm,BC=3cm.動點M,N從點C同時出發(fā),均以每秒1cm的速度分別沿CA、CB向終點A,B移動,同時動點P從點B出發(fā),以每秒2cm的速度沿BA向終點A移動,連接PM,PN,設移動時間為t(單位:秒,0<t<2.5).

(1)當t為何值時,以A,P,M為頂點的三角形與ABC相似?

(2)是否存在某一時刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案