(8-3矩形、菱形、正方形·2013東營(yíng)中考)如圖,E、F分別是正方形ABCD的邊CDAD上的點(diǎn),且CE=DF,AEBF相交于點(diǎn)O,下列結(jié)論:(1)AE=BF;(2)AEBF;(3)AO=OE;(4)中正確的有(     )

A.  4個(gè)      B.  3個(gè)     C.  2個(gè)     D.  1個(gè)

12.B.解析:在正方形ABCD中,因?yàn)镃E=DF,所以AF=DE,又因?yàn)锳B=AD,所以,所以AE=BF,,,因?yàn)?sub>,所以,即,所以AE⊥BF,因?yàn)?sub>S四邊形DEOF,所以 S四邊形DEOF,故(1),(2),(4)正確.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、如圖,過四邊形ABCD的四個(gè)頂點(diǎn)分別作對(duì)角線AC、BD的平行線,所圍成的四邊形EFGH顯然是平行四邊形.

(1)當(dāng)四邊形ABCD分別是菱形、矩形、等腰梯形時(shí),相應(yīng)的平行四邊形EFGH一定是“菱形、矩形、正方形”中的哪一種?請(qǐng)將你的結(jié)論填入下表:
(2)反之,當(dāng)用上述方法所圍成的平行四邊形EFGH分別是矩形、菱形時(shí),相應(yīng)的原四邊形ABCD必須滿足怎樣的條件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、平行四邊形、矩形、菱形、正方形的包含關(guān)系可用圖表示,則圖中陰影部分表示的圖形是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

課題學(xué)習(xí):
(1)如圖1,E、F、G、H分別是正方形ABCD各邊的中點(diǎn),則四邊形EFGH是
正方
正方
形,正方形ABCD的面積記為S1,EFGH的面積為S2,則S1和S2間的數(shù)量關(guān)系:
S1=2S2
S1=2S2
;
(2)如圖2,E、F、G、H分別是菱形ABCD各邊的中點(diǎn),則四邊形EFGH是
形,菱形ABCD的面積為S1,EFGH的面積為S2,則S1和S2間的數(shù)量關(guān)系:
S1=2S2
S1=2S2
;
(3)如圖3,梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD,垂足為O,E、F、G、H分別為各邊的中點(diǎn).四邊形EFGH是
形;若梯形ABCD的面積記為S1,四邊形EFGH的面積記為S2,由圖可猜想S1和S2間的數(shù)量關(guān)系為:
S1=2S2
S1=2S2

(4)如圖4,E、G分別是平行四邊形ABCD的邊AB、DC的中點(diǎn),H、F分別是邊形AD、BC上的點(diǎn),且四邊形EFGH為平行四邊形,若把平行四邊形ABCD的面積記為S1,把平行四邊形形EFGH的面積記為S2,試猜想S1和S2間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖矩形ABCD的對(duì)角線AC、BD交于點(diǎn)O,過點(diǎn)D作DP∥OC,且DP=OC,連接CP,判斷四邊形CODP的形狀并說(shuō)明理由.
(2)如果題目中的矩形變?yōu)榱庑,結(jié)論應(yīng)變?yōu)槭裁?說(shuō)明理由.
(3)如果題目中的矩形變?yōu)檎叫,結(jié)論又應(yīng)變?yōu)槭裁矗空f(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

舉出既是軸對(duì)稱又是中心對(duì)稱的圖形
矩形、菱形、正方形、圓
矩形、菱形、正方形、圓
 (至少寫3個(gè))

查看答案和解析>>

同步練習(xí)冊(cè)答案