【題目】如圖,CE是ABCD的邊AB的垂直平分線,垂足為點O,CE與DA的延長線交于點E.連接AC,BE,DO,DO與AC交于點F,則下列結論:
①四邊形ACBE是菱形;
②∠ACD=∠BAE;
③AF:BE=2:3;
④S四邊形AFOE:S△COD=2:3.
其中正確的結論有_____.(填寫所有正確結論的序號)
【答案】①②④.
【解析】
根據(jù)菱形的判定方法、平行線分線段成比例定理、直角三角形斜邊中線的性質(zhì)一一判斷即可.
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∵EC垂直平分AB,
∴OA=OB=AB=DC,CD⊥CE,
∵OA∥DC,
∴=,
∴AE=AD,OE=OC,
∵OA=OB,OE=OC,
∴四邊形ACBE是平行四邊形,
∵AB⊥EC,
∴四邊形ACBE是菱形,故①正確,
∵∠DCE=90°,DA=AE,
∴AC=AD=AE,
∴∠ACD=∠ADC=∠BAE,故②正確,
∵OA∥CD,
∴,
∴,故③錯誤,
設△AOF的面積為a,則△OFC的面積為2a,△CDF的面積為4a,△AOC的面積=△AOE的面積=3a,
∴四邊形AFOE的面積為4a,△ODC的面積為6a
∴S四邊形AFOE:S△COD=2:3.故④正確.
故答案是:①②④.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線的頂點為A.
(1)求點A的坐標;
(2)將線段沿軸向右平移2個單位得到線段.
①直接寫出點和的坐標;
②若拋物線與四邊形有且只有兩個公共點,結合函數(shù)的圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“分組合作學習”成為我市推動課堂教學改革,打造自主高效課堂的重要舉措.某中學從全校學生中隨機抽取100人作為樣本,對“分組合作學習”實施前后學生的學習興趣變化情況進行調(diào)查分析,統(tǒng)計如下:
分組前學生學習興趣 分組后學生學習興趣
請結合圖中信息解答下列問題:
(1)求出分組前學生學習興趣為“高”的所占的百分比為 ;
(2)補全分組后學生學習興趣的統(tǒng)計圖;
(3)通過“分組合作學習”前后對比,請你估計全校2000名學生中學習興趣獲得提高的學生有多少人?請根據(jù)你的估計情況談談對“分組合作學習”這項舉措的看法.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,矩形ABCD中,∠ACB=30°,將△ACD繞C點順時針旋轉(zhuǎn)α(0°<α<360°)至△A'CD'位置.
(1)如圖2,若AB=2,α=30°,求S△BCD′.
(2)如圖3,取AA′中點O,連OB、OD′、BD′.若△OBD′存在,試判定△OBD′的形狀.
(3)當α=α1時,OB=OD′,則α1= °;當α=α2時,△OBD′不存在,則α2= °.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,AB是⊙O的直徑,AC是弦,點P是的中點,PE⊥AC交AC的延長線于E.
(1)求證:PE是⊙O的切線;
(2)如圖2,作PH⊥AB于H,交BC于N,若NH=3,BH=4,求PE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】據(jù)新浪網(wǎng)調(diào)查,2019年全國網(wǎng)民最關注的熱點話題分別有:消費、教育、環(huán)保、反腐及其它共五類,且關注五類熱點問題的網(wǎng)民的人數(shù)所占百分比如圖1所示,關注該五類熱點問題網(wǎng)民的人數(shù)的不完整條形統(tǒng)計如圖2,請根據(jù)圖中信息解答下列問題.
(1)求出圖1中關注“反腐”類問題的網(wǎng)民所占百分比x的值,并將圖2中的不完整的條形統(tǒng)計圖補充完整;
(2)為了深度了解網(wǎng)民對政府工作報告的想法,新浪網(wǎng)邀請5名網(wǎng)民代表甲、乙、丙、丁、戊做客新浪訪談,且一次訪談只選2名代表.請你用列表法或畫樹狀圖的方法,求出一次所選代表恰好是丙和丁的概率.
(3)據(jù)統(tǒng)計,2017年網(wǎng)民最關注教育問題的人數(shù)所占百分比約為10%,則從2017年到2019年的年平均增長率約為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小圓O的半徑為1,△A1B1C1,△A2B2C2,△A3B3C3,…,△AnBnn依次為同心圓O的內(nèi)接正三角形和外切正三角形,由弦A1C1和弧A1C1圍成的弓形面積記為S1,由弦A2C2和弧A2C2圍成的弓形面積記為S2,…,以此下去,由弦Ann和弧Ann圍成的弓形面積記為Sn,其中S2020的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是直徑AB所對的半圓弧,點C在上,且∠CAB =30°,D為AB邊上的動點(點D與點B不重合),連接CD,過點D作DE⊥CD交直線AC于點E.
小明根據(jù)學習函數(shù)的經(jīng)驗,對線段AE,AD長度之間的關系進行了探究.
下面是小明的探究過程,請補充完整:
(1)對于點D在AB上的不同位置,畫圖、測量,得到線段AE,AD長度的幾組值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | 位置8 | 位置9 | ||
AE/cm | 0.00 | 0.41 | 0.77 | 1.00 | 1.15 | 1.00 | 0.00 | 1.00 | 4.04 | … |
AD/cm | 0.00 | 0.50 | 1.00 | 1.41 | 2.00 | 2.45 | td style="width:10%; border-top-style:solid; border-top-width:0.75pt; border-right-style:solid; border-right-width:0.75pt; border-left-style:solid; border-left-width:0.75pt; padding:3.38pt 5.03pt; vertical-align:middle">3.21 | 3.50 | … |
在AE,AD的長度這兩個量中,確定_______的長度是自變量,________的長度是這個自變量的函數(shù);
(2)在下面的平面直角坐標系中,畫出(1)中所確定的函數(shù)的圖象;
(3)結合畫出的函數(shù)圖象,解決問題:當AE=AD時,AD的長度約為________cm(結果精確到0.1).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com