【題目】閱讀下列材料:通過小學(xué)的學(xué)習(xí)我們知道,分?jǐn)?shù)可分為真分?jǐn)?shù)假分?jǐn)?shù),而假分?jǐn)?shù)都可化為帶分?jǐn)?shù),如:我們定義:在分式中,對于只含有一個字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為假分式;當(dāng)分子的次數(shù)小于分母的次數(shù)時,我們稱之為真分式

這樣的分式就是假分式;再如:,這樣的分式就是真分式類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式)

如:;

解決下列問題:

(1)分式______分式(真分式假分式”)

(2)將假分式化為帶分式;

(3)如果x為整數(shù),分式的值為整數(shù),求所有符合條件的x的值.

【答案】1)真分式;(2;3的整數(shù)值為:02.

【解析】

1)根據(jù)閱讀材料中的內(nèi)容可知:分式是真分式;

2)參照閱讀材料中的例子,把分式的分子化為即可把原分式化為帶分式;

3)先把分式化成帶分式的形式可得:,由原分式的值為整數(shù),可得的值為整數(shù),由此即可分析得到整數(shù)的值.

1)由真分式、假分式的定義可知,分式是真分式;

故答案為:真分式

2)∵,

∴分式化為帶分式的結(jié)果為:

3)∵,且的值為整數(shù),

的值為整數(shù),

又∵的值為整數(shù),

,

解得:,

的整數(shù)值為:02.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用直尺和圓規(guī)作一個角等于已知角的示意圖如下,則說明A′O′B′=AOB的依據(jù)是( )

A.(S.S.S.) B.(S.A.S.) C.(A.S.A.) D.(A.A.S.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在△ABC中,∠ACB=90°,AC=BC,過點(diǎn)C在△ABC外作直線MN,AMMNM,BNMNN
1)求證:MN=AM+BN
2)若過點(diǎn)C在△ABC內(nèi)作直線MNAMMNM,BNMNN,則AM、BNMN之間有什么關(guān)系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD=10,AB=8,點(diǎn)E為邊DC上一動點(diǎn),連接AE,把ADE沿AE折疊,使點(diǎn)D落在點(diǎn)D′處,當(dāng)DD′C是直角三角形時,DE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,E為邊BC上的點(diǎn),且ADBE,D為線段BE的中點(diǎn),過點(diǎn)EEFAE,過點(diǎn)AAFBC,且AFEF相交于點(diǎn)F

1)求證:∠EAD=∠BAD;

2)求證:ACEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)P的坐標(biāo)為(2a+6a-3

1)當(dāng)點(diǎn)P的縱坐標(biāo)為-4,求a的值;

2)若點(diǎn)Py軸上,求點(diǎn)P的坐標(biāo);

3)若點(diǎn)P在第四象限,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+2k+1x+k2+1=0有兩個不等實(shí)根x1、x2

1)求實(shí)數(shù)k的取值范圍

2)若方程兩實(shí)根x1x2滿足x1+x2=﹣x1x2,k的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)PQ分別是邊長為4 cm的等邊ABCAB,BC上的動點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時出發(fā),都以1 cm/s的速度分別向B,C運(yùn)動.

(1)連接AQCP交于點(diǎn)M,則PQ運(yùn)動的過程中,∠CMQ的大小變化嗎?若變化,說明理由;若不變,求出它的度數(shù);

(2)何時PBQ是直角三角形?

(3)如圖2,若點(diǎn)PQ在運(yùn)動到終點(diǎn)后繼續(xù)在射線 AB,BC上運(yùn)動,直線AQ,CP交于點(diǎn)M,則∠CMQ的度數(shù)為。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,EF是四邊形ABCD的對角線AC上的兩點(diǎn),且AFCE,DFBE,DFBE

1)求證:△CDF≌△ABE;

2)求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

同步練習(xí)冊答案