【題目】在平面直角坐標系中,Rt△ABC 的三個頂點分別是 A(﹣4,2),B(﹣1,4),C(﹣1,2).

(1)將△ABC 以點 C 為旋轉中心旋轉 180°,畫出旋轉后對應的△,的坐標為 ;

(2)平移△ABC,點 B 的對應點 的坐標為(4,﹣1),畫出平移后對應的△,的坐標為 ;

(3)若將△繞某一點旋轉可以得到△,請直接寫出旋轉中心的坐標 為

【答案】(1) (2,2);(2)(4,-3); (3)(,-).

【解析】

(1)根據(jù)旋轉變換的定義作圖可得;

(2)根據(jù)平移變換的定義作圖可得;

(3)由中心對稱變換的性質確定對稱中心,再利用中點坐標公式求解可得.

(1)如圖所示,A1B1C即為所求,其中A1的坐標為(2,2).

故答案為:(2,2);

(2)如圖所示,A2B2C2即為所求,其中C2的坐標為(4,﹣3),

故答案為:(4,﹣3);

(3)如圖,點P即為所求,其坐標為,-),

故答案為:,-).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以等邊三角形ABCBC邊為直徑畫半圓,分別交AB、AC于點ED,DF是圓的切線,過點FBC的垂線交BC于點G.若AF的長為2,則FG的長為

A. 4 B. C. 6 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD中,AB∥CD,AB=24cm,DC=10cm,點P和Q同時從D、B出發(fā),P由D向C運動,速度為每秒1cm,點Q由B向A運動,速度為每秒3cm,試求幾秒后,P、Q和梯形ABCD的兩個頂點所形成的四邊形是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市開展“環(huán)境治理留住青山綠水,綠色發(fā)展贏得金山銀山”活動,對其周邊的環(huán)境污染進行綜合治理.年對、兩區(qū)的空氣量進行監(jiān)測,將當月每天的空氣污染指數(shù)(簡稱:)的平均值作為每個月的空氣污染指數(shù),并將年空氣污染指數(shù)繪制如下表.據(jù)了解,空氣污染指數(shù)時,空氣質量為優(yōu):空氣污染指數(shù)時,空氣質量為良:空氣污染指數(shù)時,空氣質量為輕微污染.

月份

地區(qū)

區(qū)

區(qū)

1)請求出、兩區(qū)的空氣污染指數(shù)的平均數(shù);

2)請從平均數(shù)、眾數(shù)、中位數(shù)、方差等統(tǒng)計量中選兩個對區(qū)、區(qū)的空氣質量進行有效對比,說明哪一個地區(qū)的環(huán)境狀況較好.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】O 的直徑 AB 長為 10,弦 MNAB,將⊙O 沿 MN 翻折,翻折后點 B 的對應點為點 B′,若 AB′=2,MB′的長為( )

A. 2 B. 2或 2 C. 2 D. 2 或 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點的邊的延長線上一點,點是邊上的一點(不與點重合).以為鄰邊作平行四邊形,又(、在直線的同側),如果,那么的面積與面積的比值為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,的三個頂點在坐標軸上,,且,將沿著翻折到

1)求點的坐標;

2)動點從點出發(fā),沿軸以個單位秒的速度向終點運動,過點作直線垂直于軸,分別交直線、直線于點、,設線段的長為,點運動時間為秒,求的關系式,并寫出的取值范圍.

(3如圖2在(2)的條件下,點為點關于軸的對稱點,點在直線上,是否存在點,使得以、為頂點的四邊形為平行四邊形;若存在,求出值和點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D是⊙O上一點,直線AE經(jīng)過點D,直線AB經(jīng)過圓心O,交⊙O于B,C兩點,CE⊥AE,垂足為點E,交⊙O于點F,∠BCD=∠DCF

(1)求∠A+∠BOD的度數(shù);

(2)若sin∠DCE=,⊙O的半徑為5,求線段AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AB∥CD,AB⊥BC,以BC為直徑的⊙OAD相切,點EAD的中點,下列結論正確的個數(shù)是( 。

(1)AB+CD=AD;(2)SBCE=SABE+SDCE;(3)ABCD=;(4)∠ABE=∠DCE.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案