如圖,在半徑為10的⊙O 中,OC垂直弦AB于點D,AB=16,則CD的長是
.
試題分析:連接OA,在Rt△OAD中,由垂徑定理易知AD的長,再由勾股定理可求出OD的長;而CD=OC-OD,由此得解.
連接OA
Rt△OAD中,AD=
AB=8,OA=10;
由勾股定理得
∴CD=OC-OD=10-6=4.
點評:垂徑定理與勾股定理的結(jié)合使用是初中數(shù)學的重點,是中考中比較常見的知識點,一般難度不大,需熟練掌握.
練習冊系列答案
相關習題
科目:初中數(shù)學
來源:不詳
題型:單選題
如圖,以等腰直角△ABC兩銳角頂點A、B為圓心作等圓,⊙A與⊙B恰好外切,若AC=2,那么圖中兩個扇形(即陰影部分)的面積之和為
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:解答題
如圖,AB為⊙O的直徑,點C為⊙O上一點,若∠BAC=∠CAM,過點C作直線
垂直于射線AM,垂足為點D.
(1)試判斷CD與⊙O的位置關系,并說明理由;
(2)若直線
與AB的延長線相交于點E,⊙O的半徑為3,并且∠CAB=30
0.求CE的長.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:單選題
用半徑為3cm,圓心角是120°的扇形圍成一個圓錐的側(cè)面,則這個圓錐的底面半徑為
A. | B.1.5cm | C. | D.1cm |
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:解答題
如圖所示,該小組發(fā)現(xiàn)8米高旗桿DE的影子EF落在了包含一圓弧型小橋在內(nèi)的路上,于是他們開展了測算小橋所在圖的半徑的活動。小剛身高1.6米,測得其影長為2.4米,同時測得EG的長為3米,HF的長為1米,測得拱高(弧GH的中點到弦GH的距離,即MN的長)為2米,求小橋所在圓的半徑。
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:填空題
如圖,AB是⊙O的直徑,點C是⊙O上的一個定點,點P是⌒AB上一個動點,過點C作CQ⊥CP,與PB的延長線交于點Q,若AB=10,AC:BC=3:4,則CQ的最大值是
.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:單選題
如圖,⊙A與⊙B外切于點D,PC,PD,PE分別是圓的切線,C,D,E是切點,若∠CED=
°,∠ECD=
°,⊙B的半徑為R,則
的長度是( )
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:解答題
已知:如圖,
是Rt
ABC的外接圓,
ABC=90
,點P是
外一點,PA切
于點A,且PA=PB.
(1)求證:PB是
的切線;
(2)已知PA=
,BC=2,求
的半徑.
查看答案和解析>>